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The Compact Muon Solenoid experiment

● General purpose experiment at the Large Hadron 
Collider
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The CMS detector

● Multiple technologies to detect different particles
● Complex event reconstruction algorithms
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Simulation is an indispensable tool

● Huge amount of computing resources needed

● Critical for High Luminosity LHC and Phase 2 
upgrade 

● “Event Simulation” is used:
▸ to understand the detector response 

(particle-matter interaction)
▸ to estimate the performances of 

reconstruction algorithms
▸ in analysis (uncertainties, template 

fits, etc.)
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We live in the AI era

For a summary: https://iml-wg.github.io/HEPML-LivingReview/
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https://iml-wg.github.io/HEPML-LivingReview/


“Conventional” Simulation

● FullSim
▸ Generation: production of particles using 

theoretical calculations (e.g. MadGraph)
▸ Detector simulation: propagation through 

each element of the detector (GEANT4)
▸ Digitization of the energy deposits and 

reconstruction algorithms
▸ Data processing to build different data formats

~50% of available CPUs used for these steps (CMS) 
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From 2402.13684

https://arxiv.org/abs/2402.13684


CMS FlashSim

FlashSim ― Universal very fast ML-based end-to-end 
simulation

➞ targeting directly analysis-ready high-level variables 
(NANOAOD)

➞ using state-of-the-art generative models
➞ simulation speed ~100 Hz
➞ analysis and sample independent
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Conditioned detector response
● The goal is to learn a universal detector 

response
▸ we must consider all the information 

correlated to the reconstruction
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Generator-level Electron Reconstructed Electron (NANOAOD)

P( x | conditioning )

Electron pT,η,φ, … Gen-level Electron pT,η,φ, … 

Output pdf 



Multiple objects simulation

Physics objects Sources (one NN model for each source)
Number of simulated 
attributes per object

Jets Generator Jet Fake from PU 39

Muons Generator Muons Fake from Jets/PU Duplicates 53

Electrons Generator Electrons
Generator Photons 

(prompt) Fake from Jets/PU 48

Photons Generator Photons (prompt) Generator Electrons Fake from Jets/PU 22

MET GenMET and HT 25

FatJets Generator AK8 Jets 53

SubJets Generator AK8 SubJets 13

Tau Reconstructed Jets with a Tau RecoJets without a Tau 27

Secondary Vertices Jets with Heavy Flavour Light Jets Taus 16

Non MET scalars (e.g. PV) Various event level inputs 16

FSRPhotons GenMuon/RecoMuon 6
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● Single model for each object
▸ trained on existing FullSim dataset
▸ smaller models (~1M parameters)
▸ more control on the physical information 

used as conditioning

● We must consider all possible sources
▸ because of errors and pileup, fake objects 

are reconstructed
▸ e.g. electrons originated from energy 

deposits of particle jets



● We can get new samples from a complex 
multi-dimensional distribution starting 
from Gaussian noise

 

● Achieved by applying an invertible 
transformation to the Gaussian samples

● We learn the inverse transformation during 
the training process

Normalizing Flows as backbone

10

training

sampling

https://arxiv.org/abs/1912.02762

https://arxiv.org/abs/1912.02762


“Discrete” Flows

Build an (efficient) invertible transformation is not easy

Composition of simple transformations, correlated so 
that the jacobian is tractable

Affine transform:
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f1

f2

f3

Adapted from https://ehoogeboom.github.io/post/en_flows/

https://ehoogeboom.github.io/post/en_flows/


Continuous Flows (and Flow Matching)

Continuous transformation ( t∈[0, 1] )

Thanks to Flow Matching, we can learn the vector field 
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https://arxiv.org/abs/2210.02747 and 
https://arxiv.org/abs/2302.00482 

From https://github.com/atong01/conditional-flow-matching

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482
https://github.com/atong01/conditional-flow-matching


Object-level results: Jets
● 2D correlations on b-tag scores

▸ Deep Learning based discriminators

● Output correctly influenced by the conditioning
▸ b-tag ROC compatible with FullSim
▸ Reconstructed pT (and resolution) as a 

function of the starting GenJet pT
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See CMS NOTE 2023 003

https://cds.cern.ch/record/2858890?ln=it


Results (object-level): Leptons
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● Good correlations between variables associated 
with the energy deposit in the EM calorimeter

● Isolation and Impact Parameter distributions 
change with different conditioning properties

Electrons Muons



Event simulation

● We need to merge all the models
▸ efficient I/O and model evaluation

● We must also consider the probability of an 
input object to be reconstructed (Efficiency)
▸ e.g. “Probability of a Generator-level 

Electron to be reconstructed as an 
Electron”

▸ Estimated using Neural Networks (MLP, 
ResNet)

 

● Remarkable event simulation rate
▸ compared to FullSim 0.05 Hz
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Processor ODE accuracy (timesteps) Event simulation rate

GPU 3050 100 325 Hz

GPU 3050 20 690 Hz

CPU 1-core 100 15 Hz

CPU 1-core 20 60 Hz

CPU 4-core 20 120 Hz

Number of samples of t [slide]



Analysis-level validation
● Important to validate the event simulation in pseudo-analysis

▸ Higgs boson decay into muons 
[https://arxiv.org/pdf/2009.04363]

▸ Higgs boson decay into b-quarks 
[https://arxiv.org/pdf/1808.08242]

● Target accuracy within 10-20% (typical Data-Simulation 
agreement)
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https://arxiv.org/pdf/2009.04363
https://arxiv.org/pdf/1808.08242


Implications and applications
● We can produce a large number of events in a fraction of the 

time
▸ more precise estimate of systematic uncertainties
▸ more events in high rejection regions

● If the “generator” is slow, we can use oversampling
▸ because of the stochastic detector response, we can 

simulate more reco events starting from the same GEN
▸ we must consider the correlation
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Future Developments

● We are working on a complete framework
▸ most recent results under approval (talk at CHEP 2024)

● Testing the framework in real analysis scenario
▸ to check the performances and the limitations

 

● Implement production at HPC nodes
▸ large availability of GPUs can be beneficial
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Conclusions

● End-to-end event simulation is being developed 
in CMS
▸ using Normalizing Flows
▸ much faster than FullSim and with 

acceptable accuracy
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filippo.cattafesta@sns.it





Backup



The basic idea – Training
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Jets reco-level 
variables

GenJets 
variables + 

close muons, 
pileup

Pre-processing 
(e.g. standard 

scaling)

Normalizing 
Flows

Trained Sim jets 
model

ML to learn 
efficiency

Trained Eff jets 
model

Dataset (e.g. 
TTJets sample)

Pre-processing 
(e.g. standard 

scaling)

conditioning

extraction

extraction



The basic idea – Simulation
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GenJets 
variables + 

close muons, 
pileup

Trained Sim jets 
model

Trained Eff jets 
model

Dataset (e.g. 
DY sample)

Pre-processing 
(e.g. standard 

scaling)

conditioning on the 
reconstructed input objects

extraction

Jets reco-level 
variablesPost-processingNoise



Flow Matching as a solution 

Learn vector field u, approximation of v

u is the field going from noise to data 
under a Gaussian assumption

y = NN(x)
Loss = (u - y)**2

Simple regression!

see https://arxiv.org/abs/2210.02747
and https://arxiv.org/abs/2302.00482 

t=0  p(z) = N(0,1)

t=1  p(z) = N(x, )
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https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482


Differential Scale Factors for systematic variations

Given a (FullSim) sample made from a generator 
(e.g. POWHEG)

➞ we can get a sample from another 
generator (e.g. aMC@NLO)
▸ with FullSim accuracy
▸ in very short time!
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aMC@NLO(FullSim) = POWHEG(FullSim) ✕ 
POWHEG(FlashSim)

aMC@NLO(FlashSim)

True FullSim aMC@NLO sample for the comparison

FlashSim to FullSim differences cancel outVariation at FullSim accuracy

VAR.(FullSim) = REF.(FullSim) ✕ RATIO(FlashSim)



Oversampling: statistical treatment
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Oversampling → the final histogram 
is given by the weighted sum of 
sub-histograms filled with the 
distributions of events sharing the 
same GEN

Note: the final uncertainty is larger 
than just calling TH1::Fill()

+ + … +1/N ✕ 1/N ✕ 1/N ✕

EVENT-1 EVENT-2 EVENT-3

Final Histogram

N = oversampling factor

EVENT-1 EVENT-2 EVENT-3

+ +  …  +Usually, a histogram is filled with 
events (and their weights)



Oversampling
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● Non-oversampled case
▸ 𝑤 statistical weight associated with the MC event
▸ For the i-th bin of an histogram, the probability of being in this 

bin and the associated uncertainty are

● Oversampled case
▸ A fold is the set of RECO events sharing the same GEN

Prototype OversampledTH within ROOT RDataFrame (to 
be improved!) 
(https://github.com/cms-flashsim/OversampledTH)

https://github.com/cms-flashsim/OversampledTH


Statistical uncertainty reduction Z(ℓ+ℓ-)H(bb)

DY+jets with 100 < pT(Z) < 250 GeV 
oversampled by a factor 5

~80M ×5 simulated events

🠚 Statistical uncertainty is reduced 
by a factor 2-3 in the signal-enriched 
region
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without oversampling oversampling ×5



29


