FlashSim

End-to-end event simulation with Deep Learning

Physics in the AI era, September 2024 Filippo Cattafesta

The Compact Muon Solenoid experiment

• General purpose experiment at the Large Hadron Collider

The CMS detector

- Multiple technologies to detect different particles
- Complex event reconstruction algorithms

Simulation is an indispensable tool

- "Event Simulation" is used:
 - to understand the detector response (particle-matter interaction)
 - to estimate the performances of reconstruction algorithms
 - in analysis (uncertainties, template fits, etc.)

• Huge amount of computing resources needed

• Critical for *High Luminosity LHC* and *Phase 2* upgrade

We live in the AI era

For a summary: https://iml-wg.github.io/HEPML-LivingReview/

You

Produce 80 millions of Drell Yan+Jets simulated events at the CERN Large Hadron Collider. The energy of the center of mass is 13 TeV. The detector is Compact Muon Solenoid (CMS)

Copilot

Producing 80 million Drell-Yan+Jets simulated events at the CERN Large Hadron Collider (LHC) with a center-ofmass energy of 13 TeV using the Compact Muon Solenoid (CMS) detector is a complex task that typically involves specialized software and significant computational resources.

Here are the general steps involved:

- 1. Simulation Software: Use software like PYTHIA or MadGraph to generate the Drell-Yan+Jets events. These tools simulate the physics processes and produce the raw event data.
- 2. Detector Simulation: Use GEANT4 to simulate how these events would interact with the CMS detector. This step converts the raw event data into a format that mimics what the actual detector would record.
- 3. Data Processing: Process the simulated data using the CMS software framework to reconstruct the events, applying the same algorithms used for real data.
- 4. Validation: Validate the simulated data by comparing it with real data to ensure that the simulation accurately represents the physical processes and detector responses.

You

Draw a decay of the Higgs boson into 2 muons at the CMS experiment at the CERN Large Hadron Collider

Copilot

I'll try to create that.

"Conventional" Simulation

- FullSim
 - Generation: production of particles using theoretical calculations (e.g. MadGraph)
 - Detector simulation: propagation through each element of the detector (GEANT4)
 - Digitization of the energy deposits and reconstruction algorithms
 - Data processing to build different data formats

~50% of available CPUs used for these steps (CMS)

CMS FlashSim

FlashSim — Universal very fast ML-based end-to-end simulation

- → targeting **directly** analysis-ready high-level variables (NANOAOD)
- → using **state-of-the-art** generative models
- → simulation speed ~100 Hz
- → analysis and sample independent

Object property	1
lectron_charge	
lectron_cleanmask	
lectron_convVeto	
lectron_cutBased	
lectron_cutBased_HEEP	
lectron_dEscaleDown	
lectron_dEscaleUp	
lectron_dEsigmaDown	
lectron_dEsigmaUp	
lectron_deltaEtaSC	
lectron_dr03EcalRecHitS	SumEt
lectron_dr03HcalDepth1T	owerSumEt

Conditioned detector response

- The goal is to learn a universal detector response
 - we must consider all the information correlated to the reconstruction

Object property
Electron_charge
Electron_cleanmask
Electron_convVeto
Electron_cutBased
Electron_cutBased_HEEP
Electron_dEscaleDown
Electron_dEscaleUp
Electron_dEsigmaDown
Electron_dEsigmaUp
Electron_deltaEtaSC
Electron_dr03EcalRecHitSumEt
Electron_dr03HcalDepth1TowerSumEt

Generator-level Electron

Reconstructed Electron (NANOAOD)

Electron $p_T, \eta, \varphi, \dots$ Gen-level Electron $p_T, \eta, \varphi, \dots$

Multiple objects simulation

- Single model for each object
 - trained on existing FullSim dataset
 - smaller models (~1M parameters)
 - more control on the physical information used as conditioning

- We must consider all possible sources
 - because of errors and pileup, *fake objects* are reconstructed
 - e.g. electrons originated from energy deposits of particle jets

Physics objects	Sources (o	Number of simulated attributes per object			
Jets	Generator Jet	Fake from PU		39	
Muons	Generator Muons	Fake from Jets/PU	Duplicates	53	
Electrons	Generator Electrons	Generator Photons (prompt)	Fake from Jets/PU	48	
Photons	Generator Photons (prompt)	Generator Electrons	Fake from Jets/PU	22	
MET	GenMET and HT			25	
FatJets	Generator AK8 Jets			53	
SubJets	Generator AK8 SubJets			13	
Tau	Reconstructed Jets with a Tau	RecoJets without a Tau		27	
Secondary Vertices	Jets with Heavy Flavour	Light Jets	Taus	16	
Non MET scalars (e.g. PV)	Various event level inputs			16	
FSRPhotons	GenMuon/RecoMuon			6	

Normalizing Flows as backbone

• We can get new samples from a complex multi-dimensional distribution starting from Gaussian noise

 Achieved by applying an invertible transformation to the Gaussian samples

• We learn the inverse transformation during the training process

https://arxiv.org/abs/1912.02762

"Discrete" Flows

Build an (efficient) invertible transformation is not easy

Composition of **simple transformations**, correlated so that the jacobian is tractable

Affine transform:

$$\tau(\mathbf{z}_i; \boldsymbol{h}_i) = \alpha_i \mathbf{z}_i + \beta_i$$

Adapted from https://ehoogeboom.github.io/post/en_flows/

Continuous Flows (and Flow Matching)

Continuous transformation ($t \in [0, 1]$)

$$f(0; z) = z = Gaussian$$

$$f(1; z) = \text{target p.d.f.}$$

$$f(t + dt) = f(t) + v(t) \cdot dt$$

$$(t + dt) = f(t) + DNN(f(t)) \cdot dt$$

Thanks to Flow Matching, we can learn the vector field v_t

Object-level results: Jets

- 2D correlations on b-tag scores
 - Deep Learning based discriminators
- Output correctly influenced by the conditioning
 - b-tag ROC compatible with FullSim
 - Reconstructed p_T (and resolution) as a function of the starting GenJet p_T

See CMS NOTE 2023 003

Results (object-level): Leptons

- Good correlations between variables associated with the energy deposit in the EM calorimeter
- Isolation and Impact Parameter distributions
 change with different conditioning properties

Event simulation

- We need to merge all the models
 - efficient I/O and model evaluation

- We must also consider the probability of an input object to be reconstructed (Efficiency)
 - e.g. "Probability of a Generator-level Electron to be reconstructed as an Electron"
 - Estimated using Neural Networks (MLP, ResNet)

- Remarkable event simulation rate
 - compared to FullSim 0.05 Hz

Number of samples of t [slide]

Processor	ODE accuracy (timesteps)	Event simulation rate				
GPU 3050	100	325 Hz				
GPU 3050	20	690 Hz				
CPU 1-core	100	15 Hz				
CPU 1-core	20	60 Hz				
CPU 4-core	20	120 Hz				

Analysis-level validation

- Important to validate the event simulation in pseudo-analysis
 - Higgs boson decay into muons [https://arxiv.org/pdf/2009.04363]
 - Higgs boson decay into b-quarks [https://arxiv.org/pdf/1808.08242]

• Target accuracy within 10-20% (typical Data-Simulation agreement)

Implications and applications

- We can produce a large number of events in a fraction of the time
 - more precise estimate of systematic uncertainties
 - more events in high rejection regions

- If the "generator" is slow, we can use oversampling
 - because of the stochastic detector response, we can simulate more reco events starting from the same GEN

10-

10-3

10

we must consider the correlation

Future Developments

- We are working on a complete framework
 - most recent results under approval (talk at CHEP 2024)

- Testing the framework in real analysis scenario
 - to check the performances and the limitations

- Implement production at HPC nodes
 - large availability of GPUs can be beneficial

Conclusions

- End-to-end event simulation is being developed in CMS
 - using Normalizing Flows
 - much faster than FullSim and with acceptable accuracy

The basic idea – Training

The basic idea – Simulation

Flow Matching as a solution

t=0
$$p(z) = N(0,1)$$

Learn vector field *u*, approximation of *v*

u is the field going from noise to data under a Gaussian assumption

t=1
$$p(z) = N(x, \sigma_{\min})$$

$$p_t(z|x) = \mathcal{N}(z|tx, (t\sigma_{\min} - t + 1)^2),$$
$$u_t(z|x) = \frac{x - (1 - \sigma_{\min})z}{1 - (1 - \sigma_{\min})t},$$

y = NN(x)Loss = $(u - y)^{**2}$ Simple regression!

Differential Scale Factors for systematic variations

VAR.(FullSim) = REF.(FullSim) X RATIO(FlashSim)

Variation at FullSim accuracy

Given a (FullSim) sample made from a generator (e.g. POWHEG)

we can get a sample from another generator (e.g. aMC@NLO)

- with FullSim accuracy
- in very short time!

FlashSim to FullSim differences cancel out

CMS Simulation Preliminary

Oversampling: statistical treatment

Usually, a histogram is filled with events (and their weights)

Oversampling → the final histogram is given by the weighted sum of *sub-histograms* filled with the distributions of events sharing the same GEN

Note: the final uncertainty is larger than just calling TH1::Fill()

Oversampling

Prototype OversampledTH within ROOT RDataFrame (to be improved!)

https://github.com/cms-flashsim/OversampledTH

- Non-oversampled case
 - w statistical weight associated with the MC event
 - For the *i*-th bin of an histogram, the probability of being in this bin and the associated uncertainty are

$$p_i = \frac{\sum_{j \in \text{bin}} w_j}{\sum_{k \in \text{sample}} w_k} \qquad \sigma_i = \frac{\sqrt{\sum_{j \in \text{bin}} w_j^2}}{\sum_{k \in \text{sample}} w_k}$$

- Oversampled case
 - A *fold* is the set of RECO events sharing the same GEN

$$p_{i} = \frac{\sum_{j \in \text{bin}} \sum_{l \in \text{fold} \in \text{bin}} w_{jl}}{N \sum_{k \in \text{sample}} w_{k}} = \frac{\sum_{j \in \text{bin}} \sum_{l \in \text{fold} \in \text{bin}} w_{jl}/N}{\sum_{k \in \text{sample}} w_{k}} \equiv \frac{\sum_{j \in \text{bin}} w_{j} p_{j}^{\text{fold}}}{\sum_{k \in \text{sample}} w_{k}}$$

$$\sigma_{i} = \frac{\sqrt{\sum_{j \in \text{bin}} (w_{j} p_{j}^{\text{fold}})^{2}}}{\sum_{k \in \text{sample}} w_{k}}$$

Statistical uncertainty reduction $Z(\ell^+\ell^-)H(bb)$

DY+jets with $100 < p_T(Z) < 250 \text{ GeV}$ oversampled by a factor 5

~80M ×5 simulated events

 Statistical uncertainty is reduced by a factor 2-3 in the signal-enriched region

without oversampling

oversampling ×5

			Millions of events per day on a HPC Node						Ratio to Conventional sim					
	Gen time	Fold	Conventional	Object sampling speed (kHz)				Object sampling speed (kHz)						
Generator	s/event	size	(20 s/event)	1	5	10	50	100	1	5	10	50	100	
Existing	0	1	0.138	17.3	86.4	172.8	864.0	1728.0	125	625	1250	6250	12 500	
Simple	0.02	1	0.138	15.4	53.2	76.8	119.2	128.0	111	385	556	863	927	
		10	0.138	17.1	81.3	153.6	531.7	768.0	123	588	1111	3847	5556	
Average	1	1	0.132	2.4	2.7	2.7	2.8	2.8	18	20	21	21	21	
		10	0.138	10.6	20.9	23.8	26.8	27.2	77	152	173	195	198	
Accurate	20	1	0.069	0.14	0.14	0.14	0.14	0.14	2	2	2	2	2	
and slow		10	0.126	1.28	1.4	1.4	1.4	1.4	10	11	11	11	11	

Table 2. Comparison of millions of events produced per day on a single 4 GPU computing node in different scenarios and their ratio to a conventional simulation scenario taking 20 s per event.