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The Compact Muon Solenoid experiment
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The CMS detector

CMS DETECTOR STEEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes
Overall diameter :15.0m
Overalllength  :28.7m
Magnetic field :3.8T

SILICON TRACKERS

Pixel (100x150 ym) ~1m?* ~66M channels
Microstrips (80x180 gm) ~200m? ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

Muon

Electron

= Charged Hadron (e.g. Pien)
— = — = Neutral Hadron (e.g. Neutron)
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Elctromagnetic ) ELECTROMAGNETIC
Calorimeter CALORIMETER (ECAL)

~76,000 scintillating PBWO, crystals

Superconductirg
soleroid
Iron return yoke interspersed
with Muon chambers il
HADRON CALORIMETER (HCAL)
lilm 1rl Iln !!III iill lill HIII TIHI Brass + Plastic scintillator ~7,000 channels

e Multiple technologies to detect different particles
e Complex event reconstruction algorithms

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

Silicon strips ~16m? ~137,000 channels

| FORWARD CALORIMETER
7 Steel + Quartz fibres ~2,000 Channels



Simulation is an indispensable tool
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We live Iin the Al era

For a summary: https://iml-wg.github.io/HEPML-LivingReview/

You

Produce 80 millions of Drell Yan+Jets simulated events at the CERN Large Hadron Collider. The energy of the
center of mass is 13 TeV. The detector is Compact Muon Solenoid (CMS)

Copilot

Producing 80 million Drell-Yan+Jets simulated events at the CERN Large Hadron Collider (LHC) with a center-of-
mass energy of 13 TeV using the Compact Muon Solenoid (CMS) detector is a complex task that typically

involves specialized software and significant computational resources.

Here are the general steps involved:

1. Simulation Software: Use software like PYTHIA or MadGraph to generate the Drell-Yan+Jets events. These
tools simulate the physics processes and produce the raw event data.

2. Detector Simulation: Use GEANT4 to simulate how these events would interact with the CMS detector. This
step converts the raw event data into a format that mimics what the actual detector would record.

3. Data Processing: Process the simulated data using the CMS software framework to reconstruct the events,
applying the same algorithms used for real data.

4. Validation: Validate the simulated data by comparing it with real data to ensure that the simulation accurately
represents the physical processes and detector responses.

: You

Draw a decay of the Higgs boson into 2 muons at the CMS experiment at the CERN Large Hadron Collider

o Copilot

I'll try to create that.



https://iml-wg.github.io/HEPML-LivingReview/

“Conventional” Simulation

e FullSim

» Generation: production of particles using
theoretical calculations (e.g. MadGraph)

» Detector simulation: propagation through
each element of the detector (GEANT4)

» Digitization of the energy deposits and
reconstruction algorithms

» Data processing to build different data formats

~50% of available CPUs used for these steps (CMS)
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https://arxiv.org/abs/2402.13684

CMS FlashSim

FlashSim — Universal very fast ML-based end-to-end

simulation

— targeting directly analysis-ready high-level variables

(NANOAOD)

using state-of-the-art generative models
simulation speed ~100 Hz

analysis and sample independent
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Generator (GEANT4 based)
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Object property

end-to-end conventional

Electron_charge

Electron_cleanmask

Electron_convVeto

Electron_cutBased

GenDressedLepton

GenIsolatedPhoton

GenJet

GenJetAKs

GenMET

GenPart

Electron_cutBased HEEP

Electron_dEscaleDown

Electron_dEscaleUp

Electron_dEsigmaDown

Analysis Dataset

Electron_dEsigmaUp

Electron_deltaEtasc

Electron_dro3EcalRecHitSumEt

Electron_dro3HcalDepthiTowerSumEt

Reconstruction
algorithms



Conditioned detector response

e The goal is to learn a universal detector
response
» we must consider all the information
correlated to the reconstruction

Object property
Electron_charge
Electron_cleanmask
Electron_convVeto
Electron_cutBased
Electron_cutBased HEEP
Electron_dEscaleDown
Electron_dEscaleUp
Electron_dEsigmaDown
Electron_dEsigmaUp
Electron_deltaEtasC
Electron_dro3EcalRecHitSumEt
Electron_dro3HcalDepthiTowerSumEt

Generator-level Electron Reconstructed Electron (NANOAOD)

Output pdf

P( x | conditionin
(/ | ior g)

pd N\

Electron p,n,o, ... Gen-level Electron p.,n,®, ...




Multiple objects simulation

e Single model for each object

>

>

4

trained on existing FullSim dataset
smaller models (~1M parameters)

more control on the physical information
used as conditioning

e We must consider all possible sources

»

because of errors and pileup, fake objects
are reconstructed

e.g. electrons originated from energy
deposits of particle jets

Number of simulated
Physics objects Sources (one NN model for each source) attributes per object
Jets Generator Jet Fake from PU 39
Muons Generator Muons Fake from Jets/PU Duplicates 53

Generator Photons

Electrons Generator Electrons (prompt) Fake from Jets/PU 48
Photons Generator Photons (prompt) Generator Electrons Fake from Jets/PU 22
MET GenMET and HT 25
FatJets Generator AK8 Jets 53
SubJets Generator AK8 SubJets 13
Tau Reconstructed Jets with a Tau RecoJets without a Tau 27
Secondary Vertices Jets with Heavy Flavour Light Jets Taus 16
Non MET scalars (e.g. PV) Various event level inputs 16
FSRPhotons GenMuon/RecoMuon 6




Normalizing Flows as backbone

e We can get new samples from a complex
multi-dimensional distribution starting
from Gaussian noise

e Achieved by applying an invertible
transformation to the Gaussian samples

e We learn the inverse transformation during
the training process
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x = f(z)
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https://arxiv.org/abs/1912.02762

“Discrete” Flows

Build an (efficient) invertible transformation is not easy

Composition of simple transformations, correlated so
that the jacobian is tractable

Affine transform: T(Zi; hz’) = o;Z; + B

Adapted from

11


https://ehoogeboom.github.io/post/en_flows/

Continuous Flows (and Flow Matching)

Continuous transformation (t€[0, 1])
f(0; 2) = z = Gaussian
f(1; z) = target p.d.f.
flt+dt) = f(t) +v(t) - dt
f(t+dt)=f(t)+ DNN(f(t))-dt

Thanks to Flow Matching, we can learn the vector field v;

From

px(x)

pz(z)

l AT

N

Z

and
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https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482
https://github.com/atong01/conditional-flow-matching

Object-level results: Jets

e 2D correlations on b-tag scores
» Deep Learning based discriminators

e  Output correctly influenced by the conditioning
» b-tag ROC compatible with FullSim
> Reconstructed p; (and resolution) as a
function of the starting GenJet p_.
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See CMS NOTE 2023 003
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https://cds.cern.ch/record/2858890?ln=it

Results (object-level): Leptons

CMS Simulation Preliminary Electrons CMS Simulation Preliminary Muons
1 Y ) 1 v T T T T T T T
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sieie

e Good correlations between variables associated
with the energy deposit in the EM calorimeter

e |solation and Impact Parameter distributions
change with different conditioning properties
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pr [GeV] deltaEtaSC hoe sieie r9 elnvMinusPInv
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Event simulation

e We need to merge all the models
» efficient I/0O and model evaluation

e We must also consider the probability of an
input object to be reconstructed (Efficiency)
» e.g. “Probability of a Generator-level
Electron to be reconstructed as an
Electron”
»  Estimated using Neural Networks (MLP,
ResNet)

e Remarkable event simulation rate
» compared to FullSim 0.05 Hz

CMS Private Work

FlashSim (p$N > 20 GeV)

FullSim (p$EN > 20 GeV)

05

Number of samples of t [ ]

Processor ODE accuracy (timesteps) | Event simulation rate
GPU 3050 100 325 Hz
GPU 3050 20 690 Hz
CPU 1-core 100 15 Hz
CPU 1-core 20 60 Hz
CPU 4-core 20 120 Hz

15



Analysis-level validation

. . . . i 10 PMS Simulation Preliminary (13Tev)
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https://arxiv.org/pdf/2009.04363
https://arxiv.org/pdf/1808.08242

Implications and applications

_CMS Private Work 2018 (13 TeV)

o 1CMS Private Work __ 2018 (13TeV) , _
e We can produce a large number of events in a fraction of the £ ™" Dloorsn | & | Foorsintes [S—
E 10 S =
time < < I
» more precise estimate of systematic uncertainties
» more events in high rejection regions
jm ik :::?, oo
e If the “generator” is slow, we can use oversampling T B R
» because of the stochastic detector response, we can g oo o 2010 (13 TeY)
:C: :_ ignal Region L_.EFU\\Slm _:
simulate more reco events starting from the same GEN P Beorons Y 100 <pZ<250GeV [ Jrwssm 3
260 F FlashSim (x 5) ~
» we must consider the correlation e = E
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Future Developments

e We are working on a complete framework
» most recent results under approval (talk at CHEP 2024)

e Testing the framework in real analysis scenario
» to check the performances and the limitations

e Implement production at HPC nodes
» large availability of GPUs can be beneficial

18



Conclusions

e End-to-end event simulation is being developed
in CMS
» using Normalizing Flows
» much faster than FullSim and with
acceptable accuracy

DA filippo.cattafesta@sns.it
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The basic idea - Training

Jets reco-level

Pre-processing

variables

extraction

Dataset (e.g.
TTJets sample)
extraction GenJets
variables +
close muons,
pileup

(e.g. standard Normalizing
i Flows
scaling)
7
e
7
e
_ e
~ conditioning
7
7
Z
oo standare ML to learn
(e.g. standard to
efficiency

scaling)

Trained Sim jets

—
model

Trained Eff jets

—
model
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The basic idea — Simulation

. Trained Sim jets
Noise
model

\

Dataset (e.g.
DY sample)

—)[ Post-processing ]—)[

Jets reco-level
variables

]

N conditioning on the

N N reconstructed input objects

\

Trained Eff jets
model

extraction GenJets Pre-processing
variables +
(e.g. standard
close muons, :
. scaling)
pileup
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Flow Matching as a solution =

t=0 = p@ =N(0,1)
Learn vector field u, approximation of v t=1 oo > p2) =NK, Omin )

u is the field going from noise to data
under a Gaussian assumption

pi(2|z) = N(z|tz, (tomm — t + 1)?),

T — (1 — Omin)2
1 — (1 — O’min)lf7

y = NN(X) ut(z‘x) -
Loss = (u - y)™2
Simple regression!

24


https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Differential Scale Factors for systematic variations

VAR.(FullSim) = REF.(FullSim) X RATIO(FlashSim)

Variation at FullSim accuracy

Given a (FullSim) sample made from a generator

(e.g. POWHEG)

— we can get a sample from another

generator (e.g. aMC@NLO)
» with FullSim accuracy
» in very short time!

aMC@NLO(FullSim) = POWHEG(FullSim) X

True FullSim aMC@NLO sample for the comparison

aMC@NLO(FlashSim)

POWHEG(FlashSim)

FlashSim to FullSim differences cancel out

CMS Simulation Preliminary

== POWHEG flash e aMC@NLO flash

s POWHEG e aMC@NLO

POWHEG flash

Events

10*

10°

. 2MC@NLO flash'POWHEG ST

14—

atio

..........

2 25 3 35 4
VBF DNN Output
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Oversampling: statistical treatment

EVENT-1 EVENT-2 EVENT-3

Usually, a histogram is filled with
events (and their weights) [

N = oversampling factor

Oversampling — the final histogram EVENT- EVENT-2 EVENT-3

is given by the weighted sum of 1/N x + 1/N x + ... +1/N x
sub-histograms filled with the

distributions of events sharing the N ,
same GEN Y

Note: the final uncertainty is larger
than just calling TH1::Fil11()

Final Histogram 26



Prototype OversampledTH within ROOT RDataFrame (to
be improved!)

( )

Oversampling

e Non-oversampled case
» w statistical weight associated with the MC event
» For the i-th bin of an histogram, the probability of being in this
bin and the associated uncertainty are

2
> j€bin Wj B \/ZJ ebin Wj

O; —
Zk’ésample Wy,

bi =
Zk:Esample Wy,

e Oversampled case
» Afold is the set of RECO events sharing the same GEN

fold
Zijin D _lcfoldebin Wil - Zjebin D icfoldebin Wit/ N _ Ejebin W;5P;
N Zstample Wi Zk}Esample Wi, Zszsample Wi

S a0

ZkEsample W

2’:

o)
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https://github.com/cms-flashsim/OversampledTH

Statistical uncertainty reduction Z(£*£")H(bb)

DY+jets with 100 < p.(Z) < 250 GeV
oversampled by a factor 5

~80M x5 simulated events

O Statistical uncertainty is reduced
by a factor 2-3 in the signal-enriched
region

102 CMS Private Work 2018 (13 TeV)
F ‘SignaIIRegion I l ‘ l ‘ ! "]
} Electrons Drell-Yan pi Binned

L B L IR R I

[T

T T
-p§<506ev

50 < p? < 100 GeV
T
[ 100 < p? < 250 GeV

I 250 < p <400 GeV %
[ 400 < p? < 650 Gev [P

I o7 > 650 GeV

ol b b b b Lo

1 2 3 4 5 6 7 8 9 10
DNN Score Bin

without oversampling

[:\]_/ 18 [ Electrons Drell-Yan pi Binned

~ 16— Oversampling Factor = 5 [ 250 < p < 400 GeV

102 CMS Private Work 2018 (13 TeV)
QT T[T T[T T T[T T [ TT T [ TT T[T T [T O[T TT ]
 Signal Region I 7 < 50 Gev
C T [ 50 <% < 100 GeV
r 100-250 GeV Flash Simulated [ 100 < p? < 250 GeV

[ 400 < p? < 650 GeV
[ o7 > 650 GeV

1 2 3 4 5 6 7 8 9 10
DNN Score Bin

oversampling x5
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Table 2. Comparison of millions of events produced per day on a single 4 GPU computing node in different scenarios and their ratio to a
conventional simulation scenario taking 20 s per event.

Gentime Fold Conventional

Millions of events per day on a HPC Node

Ratio to Conventional sim

Object sampling speed (kHz)

Object sampling speed (kHz)

Generator s/event size (20 s/event) 1 5 10 50 100 1 5 10 50 100
Existing 0 1 0.138 17.3 86.4 172.8 864.0 1728.0 125 625 1250 6250 12500
Simple 0.02 1 0.138 154 53.2 76.8 119.2 128.0 111 385 556 863 927
10 0.138 17.1 81.3 153.6 531.7 768.0 123 588 1111 3847 5556
Average 1 1 0.132 24 2.7 2.7 2.8 2.8 18 20 21 21 21
10 0.138 10.6 209 238 26.8 27.2 77 152 173 195 198
Accurate 20 1 0.069 0.14 0.14 0.14 0.14 0.14 2 2 2 2 2
and slow 10 0.126 1.28 14 14 14 1.4 10 11 11 11 11
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