FlashSim

End-to-end event simulation with Deep Learning

Filippo Cattafesta Physics in the AI era, September 2024

The Compact Muon Solenoid experiment

General purpose experiment at the Large Hadron **Collider**

The CMS detector

- Multiple technologies to detect different particles
- Complex event reconstruction algorithms

Simulation is an indispensable tool

- "Event Simulation" is used:
	- ▸ to understand the **detector response** (particle-matter interaction)
	- ▸ to estimate the performances of **reconstruction algorithms**
	- ▸ in **analysis** (uncertainties, template fits, etc.)

Huge amount of computing resources needed

● Critical for *High Luminosity LHC* and *Phase 2* upgrade

We live in the AI era

For a summary: <https://iml-wg.github.io/HEPML-LivingReview/>

You

Produce 80 millions of Drell Yan+Jets simulated events at the CERN Large Hadron Collider. The energy of the center of mass is 13 TeV. The detector is Compact Muon Solenoid (CMS)

Copilot

Producing 80 million Drell-Yan+Jets simulated events at the CERN Large Hadron Collider (LHC) with a center-ofmass energy of 13 TeV using the Compact Muon Solenoid (CMS) detector is a complex task that typically involves specialized software and significant computational resources.

Here are the general steps involved:

- 1. Simulation Software: Use software like PYTHIA or MadGraph to generate the Drell-Yan+Jets events. These tools simulate the physics processes and produce the raw event data.
- 2. Detector Simulation: Use GEANT4 to simulate how these events would interact with the CMS detector. This step converts the raw event data into a format that mimics what the actual detector would record.
- 3. Data Processing: Process the simulated data using the CMS software framework to reconstruct the events, applying the same algorithms used for real data.
- 4. Validation: Validate the simulated data by comparing it with real data to ensure that the simulation accurately represents the physical processes and detector responses.

You

Draw a decay of the Higgs boson into 2 muons at the CMS experiment at the CERN Large Hadron Collider

Copilot

I'll try to create that.

"Conventional" Simulation

- **FullSim**
	- ▸ **Generation**: production of particles using theoretical calculations (e.g. MadGraph)
	- ▸ **Detector simulation**: propagation through each element of the detector (GEANT4)
	- ▸ **Digitization** of the energy deposits and **reconstruction algorithms**
	- ▸ **Data processing** to build different data formats

~50% of available CPUs used for these steps (CMS)

CMS FlashSim

FlashSim ― Universal very fast ML-based end-to-end simulation

- ➞ targeting **directly** analysis-ready high-level variables (NANOAOD)
- ➞ using **state-of-the-art** generative models
- ➞ simulation speed **~100 Hz**
- ➞ analysis and sample **independent**

Conditioned detector response

- The goal is to learn a universal detector response
	- ▸ we must consider all the **information correlated to the reconstruction**

Generator-level Electron Reconstructed Electron (NANOAOD)

Electron p_{τ} , η , φ , ... ,η,φ, … Gen-level Electron p_τ,η,φ, …

Multiple objects simulation

- Single model for each object
	- ▸ trained on existing FullSim dataset
	- ▸ smaller models (~1M parameters)
	- ▸ more control on the physical information used as conditioning
- We must consider all possible sources
	- ▸ because of errors and pileup, *fake objects* are reconstructed
	- ▸ e.g. electrons originated from energy deposits of particle jets

Normalizing Flows as backbone

We can get new samples from a complex multi-dimensional distribution starting from Gaussian noise

● Achieved by applying an **invertible transformation** to the Gaussian samples

We learn the inverse transformation during the training process

"Discrete" Flows

Build an (efficient) invertible transformation is not easy

Composition of **simple transformations**, correlated so that the jacobian is tractable

Affine transform:

$$
\tau(\mathrm{z}_i;\boldsymbol{h}_i)=\alpha_i\mathrm{z}_i+\beta_i
$$

Adapted from https://ehoogeboom.github.io/post/en_flows/

Continuous Flows (and Flow Matching)

Continuous transformation (t∈[0, 1])

$$
f(0; z) = z = Gaussian
$$

$$
f(1; z) = \text{target p.d.f.}
$$

$$
f(t + dt) = f(t) + v(t) \cdot dt
$$

$$
f(t + dt) = f(t) + DNN(f(t)) \cdot dt
$$

Thanks to *Flow Matching*, we can learn the vector field v_t

Object-level results: Jets

- **2D correlations** on b-tag scores
	- Deep Learning based discriminators
- **Output correctly influenced by the conditioning**
	- ▸ b-tag ROC compatible with FullSim
	- \blacktriangleright Reconstructed p_{T} (and resolution) as a function of the starting GenJet p_{τ}

See [CMS NOTE 2023 003](https://cds.cern.ch/record/2858890?ln=it)

Results (object-level): Leptons

- Good correlations between variables associated with the energy deposit in the EM calorimeter
- Isolation and Impact Parameter distributions change with different conditioning properties

Event simulation

- We need to **merge all the models**
	- ▸ efficient I/O and model evaluation

- We must also consider the probability of an input object to be reconstructed (**Efficiency**)
	- ▸ e.g. "*Probability of a Generator-level Electron to be reconstructed as an Electron*"
	- ▸ Estimated using Neural Networks (MLP, ResNet)

- **Remarkable event simulation rate**
	- ▸ compared to FullSim 0.05 Hz

Number of samples of t [[slide](#page-11-0)]

Analysis-level validation

- Important to validate the event simulation in pseudo-analysis
	- ▸ Higgs boson decay into muons [[https://arxiv.org/pdf/2009.04363\]](https://arxiv.org/pdf/2009.04363)
	- ▸ Higgs boson decay into b-quarks [[https://arxiv.org/pdf/1808.08242\]](https://arxiv.org/pdf/1808.08242)

Target accuracy within 10-20% (typical Data-Simulation agreement)

Implications and applications

- We can produce a large number of events in a fraction of the time
	- ▸ more precise estimate of systematic uncertainties
	- ▸ more events in high rejection regions

- If the "generator" is slow, we can use **oversampling**
	- ▸ because of the stochastic detector response, we can simulate more reco events starting from the same GEN

 10^{-2} 10^{-3}

 10^{-4} 10^{-}

▸ we must consider the correlation

Future Developments

- We are working on a complete framework
	- ▸ most recent results under approval (talk at CHEP 2024)

- Testing the framework in real analysis scenario
	- ▸ to check the performances and the limitations

- Implement production at HPC nodes
	- ▸ large availability of GPUs can be beneficial

Conclusions

- End-to-end event simulation is being developed in CMS
	- ▸ using Normalizing Flows
	- ▸ much faster than FullSim and with acceptable accuracy

The basic idea – Training

The basic idea – Simulation

Flow Matching as a solution

$$
t=0
$$
 $p(z) = N(0,1)$

Learn vector field *u*, approximation of *v*

u is the field going from noise to data under a Gaussian assumption

t=1
$$
\cdots
$$
 $p(z) = N(x, \sigma_{\min})$

$$
p_t(z|x) = \mathcal{N}(z|tx, (t\sigma_{\min} - t + 1)^2),
$$

$$
u_t(z|x) = \frac{x - (1 - \sigma_{\min})z}{1 - (1 - \sigma_{\min})t},
$$

 $y = NN(x)$ $Loss = (u - y)$ ^{**}2 Simple regression!

Differential Scale Factors for systematic variations

VAR.(FullSim) = REF.(FullSim) ✕ **RATIO(FlashSim)**

Given a (FullSim) sample made from a generator Events POWHEG flash (e.g. POWHEG) aMC@NLO flash*POWHEG we can get a sample from another 10^{4} generator (e.g. aMC@NLO) with **FullSim accuracy**

Variation at FullSim accuracy FlashSim to FullSim differences cancel out

CMS Simulation Preliminary

Oversampling: statistical treatment

Usually, a histogram is filled with $+$ events (and their weights)

1/N ✕ + 1/N ✕ + … + 1/N ✕ EVENT-1 EVENT-2 EVENT-3 N = oversampling factor EVENT-1 EVENT-2 EVENT-3

Oversampling \rightarrow the final histogram is given by the weighted sum of *sub-histograms* filled with the **distributions of events sharing the same GEN**

Note: the final uncertainty is larger than just calling TH1::Fill()

Oversampling

Prototype OversampledTH within ROOT RDataFrame (**to be improved!**)

[\(https://github.com/cms-flashsim/OversampledTH](https://github.com/cms-flashsim/OversampledTH))

- Non-oversampled case
	- \triangleright *w* statistical weight associated with the MC event
	- ▸ For the *i*-th bin of an histogram, the probability of being in this bin and the associated uncertainty are

$$
p_i = \frac{\sum_{j \in \text{bin}} w_j}{\sum_{k \in \text{sample}} w_k} \qquad \sigma_i = \frac{\sqrt{\sum_{j \in \text{bin}} w_j^2}}{\sum_{k \in \text{sample}} w_k}
$$

- Oversampled case
	- ▸A *fold* is the set of RECO events sharing the same GEN

$$
p_i = \frac{\sum_{j \in \text{bin}} \sum_{l \in \text{fold} \in \text{bin}} w_{jl}}{N \sum_{k \in \text{sample}} w_k} = \frac{\sum_{j \in \text{bin}} \sum_{l \in \text{fold} \in \text{bin}} w_{jl}/N}{\sum_{k \in \text{sample}} w_k} \equiv \frac{\sum_{j \in \text{bin}} w_{j} p_{j}^{\text{fold}}}{\sum_{k \in \text{sample}} w_k}
$$

$$
\sigma_i = \frac{\sqrt{\sum_{j \in \text{bin}} (w_{j} p_{j}^{\text{fold}})^2}}{\sum_{k \in \text{sample}} w_k}
$$

Statistical uncertainty reduction $Z(\ell^+\ell^-)H(bb)$

DY+jets with 100 $<$ p_T(Z) $<$ 250 GeV **oversampled** by a factor 5

 \sim 80M \times 5 simulated events

 Statistical uncertainty is reduced by a factor 2-3 in the signal-enriched region

without oversampling \sim oversampling \times 5

			Millions of events per day on a HPC Node						Ratio to Conventional sim				
	Gen time	Fold	Conventional	Object sampling speed (kHz)					Object sampling speed (kHz)				
Generator	s/event	size	$(20$ s/event)		5	10	50	100		5	10	50	100
Existing	0		0.138	17.3	86.4	172.8	864.0	1728.0	125	625	1250	6250	12.500
Simple	0.02		0.138	15.4	53.2	76.8	119.2	128.0	111	385	556	863	927
		10	0.138	17.1	81.3	153.6	531.7	768.0	123	588	111	3847	5556
Average			0.132	2.4	2.7	2.7	2.8	2.8	18	20	21	21	21
		10	0.138	10.6	20.9	23.8	26.8	27.2	77	152	173	195	198
Accurate	20		0.069	0.14	0.14	0.14	0.14	0.14	2	\mathfrak{D}	2	2	2
and slow		10	0.126	1.28	1.4	1.4	1.4	1.4	10	11	11	11	11

Table 2. Comparison of millions of events produced per day on a single 4 GPU computing node in different scenarios and their ratio to a conventional simulation scenario taking 20 s per event.