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Complex networks capture a variety of socially relevant processes, from economic activities to the way ecosystems
respond to climate change. These phenomena naturally occur at multiple scales, but the data used to study
them is often collected at convenient scale(s) where sufficient information is available. However, the properties
of these networks can vary significantly at different resolution levels. This means that any models developed for
a single scale (defined as Single-Scale Models or SSMs) become unreliable when applied at a different scale. This
limitation underscores the need for a “multi-scale” approach that can abstract away from the specific dataset
level and account for the multi-scale nature of the underlying phenomena.

Our analysis highlights the superior ability of Multi-Scale Models (MSMs), as compared to single-scale
models, in capturing the binary-undirected projections of the observed graph at various levels of coarse-graining,
denoted as {G∗

ℓ}ℓ≥0. Concretely, we apply this procedure to the World Trade Web (WTW) reported in the
Gleditsch 2000 dataset and the Input-Output Network (ION) from ING Bank 2022 dataset.

To build {G∗
ℓ}ℓ≥0, we aggregated the observed (0-level) nodes into unique “community nodes” at higher

levels ℓ ≥ 0, based on non-overlapping partitions. Specifically, for the WTW, we used geographical distances
as a proxy for aggregation, whereas for the ION, we relied on NAICS (North American Industry Classification
System) codes. However, any other algorithm for node aggregation can be employed.

The key distinction between the SSM and MSM is that the MSM can be both renormalized in the forward
direction and “fine-grained” in the reverse direction. In the “bottom-up” procedure, the MSM prescribes to
sum the microscopic parameters in order to obtain the parameters for the aggregated block-nodes where the
“top-down” consists in fractioning the block-parameters into its constituents. This approach provides a robust
interpretation of the sum of node vectors, a concept that is barely addressed in the node-embedding literature.

In this scenario, we worked with two research paradigms:

1. Descriptive: The objective of this research line is to describe the “scaled up” graphs {G∗
ℓ}ℓ≥0 by enhancing

the MSM with node-embedding vectors (maxlMSM) which are obtained by maximizing the likelihood.
Formally, a node embedding consists in assigning a vector to each node to encode its propensity of
creating connections4. In the context of multi-scale unfolding, every block-node would have its vector
as illustrated in Figure 1a. However, it is worth recalling that the communities have been derived by
uniquely merging the 0-nodes. This leads to the research question of whether the block-vectors can also
be uniquely identified through the microscopic embeddings. Our findings indicate that the LogisticPCA
model [1], regarded as a state-of-the-art machine learning model, lacks generalizability across different
scales. In contrast, maxlMSM effectively captures coarser scales by enforcing that the block-vectors must
be equivalent to the sum of the 0-vectors. We decided to compare these two models based on the Binary
Clustering Coefficient (BCC) at the “fitting” level 0, where node embeddings have been calibrated, and
at level 2, which represents a coarse-grained scale (see Figure 1b). In particular, we report the expected
BCC on the y-axis, corresponding to either the LogisticPCA or maxlMSM, whereas the observed BCC
on the x-axis. This comparison is further enriched by insets displaying the probability matrix of the
coarse-grained model (x-axis) against the one of the fitted model (y-axis) at levels 0 and 2 - the identity
line represents the perfect match. Ultimately, the LPCA outperforms the maxlMSM at the fitting scale of
0; however, this relationship is reversed at level 2, where the maxlMSM overtakes the SSM performances.
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Overall, the maxlMSM exhibits a better agreement at multiple scales, supporting the conclusion that it
is the most appropriate model within this multi-scale framework. Comparable results were also observed
for the degree and the average nearest-neighbor degree (results not shown).

At last, we evaluated the two models using AUC-ROC and AUC-PR scores, which are widely recognized
metrics within the machine learning community. In particular, we plotted the performance of these scores
across various levels, treating the coarser levels as test sets, and we proceeded as in the previous point:
fitted the parameters at level 0, we applied the summed procedure to obtain the model at level 2. The
plot showed how the LPCA AUCs dropped at coarser levels whereas the MSM retrieves higher scores
(“single-scale overfitting”) underlying the different Nature of the two models;

2. Network Reconstruction: The scope of this part is to reconstruct the {G∗
ℓ}ℓ≥0 by encoding a number of

parameters equal to the constrained observables: 1 global parameter to reproduce the total number of
links L∗ [4, 2] or N for the N−degrees {k∗i }[0,N−1] [5]. Roughly, this technique unveils the microscopic

structure (on average) starting from aggregated network measurements, such as L∗, and allows for a com-
parison between the exogenous node-observable (e.g. the Gross-Domestic-Product GDPi) and the fitted
parameters. Interestingly, the Configuration Model (CM) and the “degree-corrected” MSM (degcMSM)
have similar functional forms; a characteristic that will have two consequences. The first one is that,
differently from the previous point, visualizing the BCC in Figure 1d is not sufficient to conclude the CM
is affected by “single-scale overfitting”. Therefore, we tested the scale-invariance requirement on the CM
which is mathematically enforced by the MSM: in Figure 1c we plotted the summed VS coarse-grained
probabilities of observing the graph at level 2. As said, the equality holds only for the MSM model but
not for the CM; a distinctive proxy of “non-scale-invariance”.

During the two analysis, we have also recovered that it is feasible to reproduce (multi-scale) the number of
triangles with a low-dimensional embedding, contradicting the recent claim made in [3].

To summarize, this examination emphasizes the need of MSM to properly model the phenomenon rather
than “overfitting” its features to a specific scale. Indeed, all SSMs have been shown to be biased toward the
fitted scale, yielding incorrect results for the others. On the other hand, the MSM showed the possibility of
describing/reconstructing the coarser-scales by exploiting its summation recipe for the block-parameters.

PS: the two studies can be considered self-contained, except for the maxlMSM with N− parameters, which
relates to both the research lines. Therefore, I envision the Descriptive part in Model Complexity with AI and/or
the Network Reconstruction in Econophysics Session.
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Figure 1: The graphical abstract in Figure 1a depicts the node-embedding procedure for two levels and
the coarse-graining flow at the “network level”. Generally, there is no established method for renormaliz-
ing the single-scale node-embedding to obtain a block-embedding. In Figure 1b, 1d we plotted the BCC for
LPCA/maxlMSM and CM/degcMSM at the levels 0 (fitted), 2 (summed). In the insets compare the summed
VS fitted probabilities at level 0 or 2. Interestingly, CM maintains a relationship with the observed BCC at
level 2 differently from LPCA. In Figure c, the comparison between the summed (SP) VS coarse-grained prob-
abilities reveals that for the CM, the summed probability underestimates the coarse-grained one. In contrast,
the degcMSM theoretically enforces the identity among the two.


