Neural Network Approaches for Quasar and Galaxy continuum Estimation

Speaker: Francesco Pistis^{1,2,3} In collaboration with: Michele Fumagalli $1,4$ Matteo Fossati^{1,5}

Affiliation(s): ^{- 1} Università Milano-Bicocca 2 National Centre for Nuclear Research 3 INAF-OAS 4 INAF-OAT 5 INAF-OAB

Funded by the European Union NextGenerationEU

Ministero dell'Università e della Ricerca

Scientific goal

Scientific goal of the project

- Automated pipeline for WEAVE survey
- Fit of the quasar continua
- Detection of absorption lines
- Measurement of absorption lines

Data

Data training and physical test

WEAVE quasar catalog (mock)

- **● Continua from PCA (Paris et al. 2011)**
- **● Lyɑ forest: Sherwood simulation**
- **● LLS and DLAs following distribution as done in Fumagalli et al. 2020**
- **● Metals random draw from distribution (empirical approach)**
- **● Noise and instrumental properties with WEAVEify (WEAVE survey simulation)**
- **● Sample size: 30 000 mock spectra (after redshift and magnitude selections)**

VIPERS galaxy catalog (observed)

● Catalog of observed galaxies ● Sample size: 50 000 (after selection on redshift and its quality)

DESI Early Data Release (observed)

- **● Catalog of observed quasars and galaxies**
- **● Selection on redshift (to recover the other catalog distributions)**
- **● Selection to remove BALs (Filbert et al. 2023)**

Methodology

NN 1: Autoencoder

- Designed to have an output similar to the input
- Training: the NN learns how to reproduce the input
- **•** Encoder: compressing the data
- Middle layer: the NN learns a compressed representation of the data
- Decoder: recover of the data from a compressed representation
- **● Compared to intelligent quasar continuum neural network (iQNet) [Liu & Bordoloi 2021]**

7

Credits: [A friendly introduction to autoencoders.](https://manuel-gilm.medium.com/a-friendly-introduction-to-autoencoders-680ac014aa4f)

NN 2: CNN & U-Net

- Skip connections (U-Net): high-resolution features are preserved and propagated through the network
- Convolutional layer: add a set of filters (kernels) to the input
- Max pooling: reduce the dimension giving the max values in the filters
- **● Compared to Lyman-α Continuum Analysis Network (LyCAN) [Turner et al. 2024]**

[U-Net Explained: Understanding its Image Segmentation Architecture](https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a)

Optimization: Autoencoder

- Not a traditional autoencoder architecture
- Activation function not equal for all layers
- Same architecture for different inputs

Table 1. Architecture of the optimized autoencoders applied to WEAVE (red and full spectra) and VIPERS data.

linear unit (ReLU) function. **Notes.** The activation

Credits: Pistis et al. (in prep.)

Optimization: U-Net

- Kernel sizes not equal for all layers
- Some layers sizes are repeated

Notes. The activation function used is the rectified linear unit (ReLU) function.

 \equiv

Optimization: Convolutional NN

- Not a traditional CNN architecture
- Kernel sizes not equal for all layers and
- Activation function not equal for all layers
- Same architecture for different Inputs

Notes. The activation functions used are the rectified linear unit (ReLU), exponential linear unit (ELU), and linear activation.

¹¹ *Credits: Pistis et al. (in prep.)*

Results

Application: autoencoders

¹³ *Credits: Pistis et al. (in prep.) Credits: Pistis et al. (in prep.)*

Application: autoencoders

Application: U-Net and CNNs

¹⁵ *Credits: Pistis et al. (in prep.) Credits: Pistis et al. (in prep.)*

Application: U-Net and CNNs

800

700

600 $0.500 C$ 400 $300₁$ 200 100

 0.01

Tests

Test 1: S/N threshold for training sample

Credits: Pistis et al. (in prep.) Credits: Pistis et al. (in prep.)

Test 1: S/N threshold for training sample

Credits: Pistis et al. (in prep.) Credits: Pistis et al. (in prep.)

Test 2: Bias in wavelength

Credits: Pistis et al. (in prep.) Credits: Pistis et al. (in prep.)

Test 2: Bias in wavelength

Credits: Pistis et al. (in prep.) Credits: Pistis et al. (in prep.)

Test 3 (quasars): Lyɑ forest optical depth – DESI

- Direct applications of the weights of the training on the WEAVE mock to DESI EDR
- $1070 \text{ Å} < \lambda < 1160 \text{ Å}$
- \bullet $\;\;$ At each $\mathsf{z}_{\mathsf{Lya}}$ bin (0.01) we compute the median transmitted flux $\langle f \rangle$
- Optical depth as
	- $\tau = -\log(\langle f \rangle)$
- No correction applied

Test 3 (galaxies): D4000n break DESI

Comparison between D4000n break computed on the predicted continua with NN and the model fit with Redrocks

²³ *Credits: Pistis et al. (in prep.)*

Conclusions

Conclusions

- **● Autoencoders have better performances for both quasars and galaxies (AFFE lower of ~0.2%)**
- **● Autoencoders have much lower computational times (factor of ~100 times)**
- **● No bias for the S/N threshold on the training sample**
- **● No bias on the FFE vs wavelength**

● Good measurement of the optical depth evolution in the Lyɑ forest region ● Good measurement for the D4000n break

Thank you for your attention!