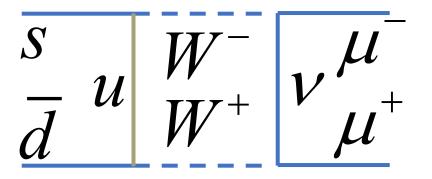


Recent results from Belle II

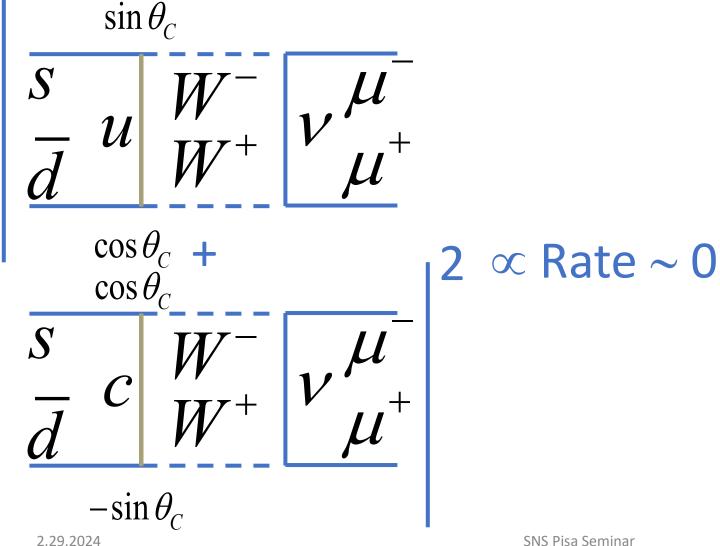
Jim Libby

Indian Institute of Technology Madras

Leap seminar: outline


- Why flavour physics?
- Why flavour physics in e^+e^- ? Belle II
- Interlude: more than *B* physics
 - τ measurements
 - hadronic cross sections for hadronic vacuum polarization to g-2
- Back to the B
 - Latest CP violation results
 - Tests of lepton-flavour universality
 - Evidence for $B^+ \rightarrow K^+ \nu \nu$
- Current status and plans

Why flavour physics? – history of discovery


- Particle zoo of mesons and baryons discovered in 1950s and early 1960s lead to the quark model
 - up (u)
 - down (d)
 - strange (s)
- An allowed but rare decay such as

$$K_L^0(s\overline{d}) \rightarrow \mu^+\mu^-$$

was predicted but not seen!

Why flavour physics? – history of discovery

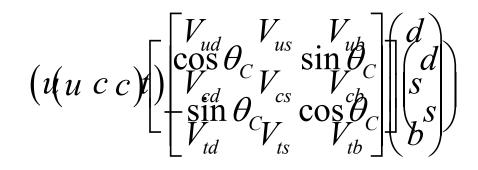
Glashow

lliopoulos

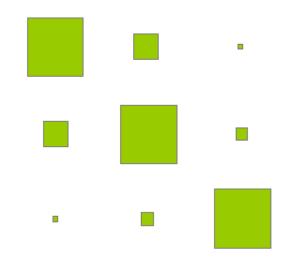
Maiani

Phys. Rev. **D** 2, 1285 (1970)

 $m_c \sim 3 m_K$


SNS Pisa Seminar

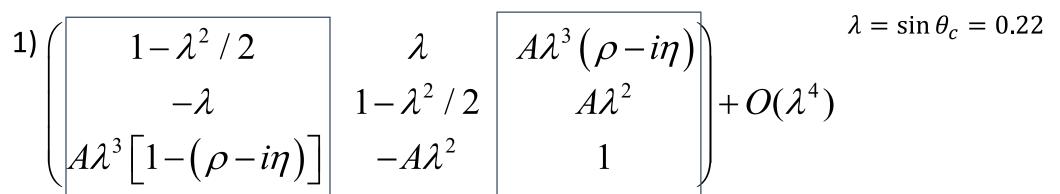
Such rare virtual processes tell you about higher energy particles


CKM matrix

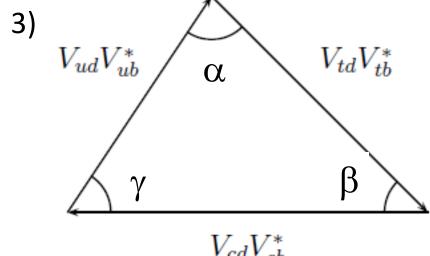
- Two by two mixing matrix proposed by Cabibbo
 - Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3 × 3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase

 Intergenerational coupling disfavoured

Relative magnitude of elements



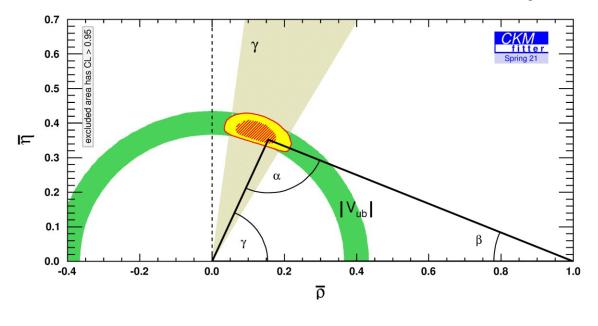
Responsible for CP violation


Visualising CP violation: the unitarity triangle

1)
$$\begin{bmatrix} 1 - \lambda^2 / 2 \\ -\lambda \\ A\lambda^3 \left[1 - (\rho - i\eta) \right] \end{bmatrix}$$

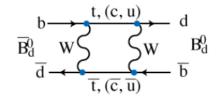
$$\lambda \\ 1 - \lambda^2 / 2 \\ -A\lambda^2$$

2) Exploit unitarity (1st and 3rd col.)
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

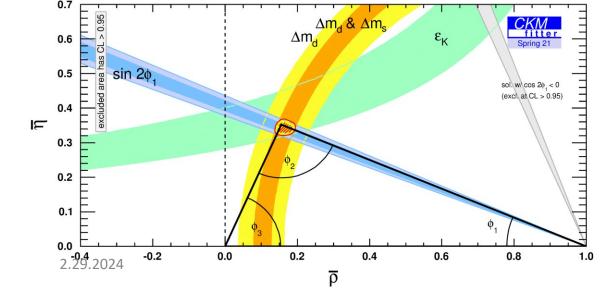


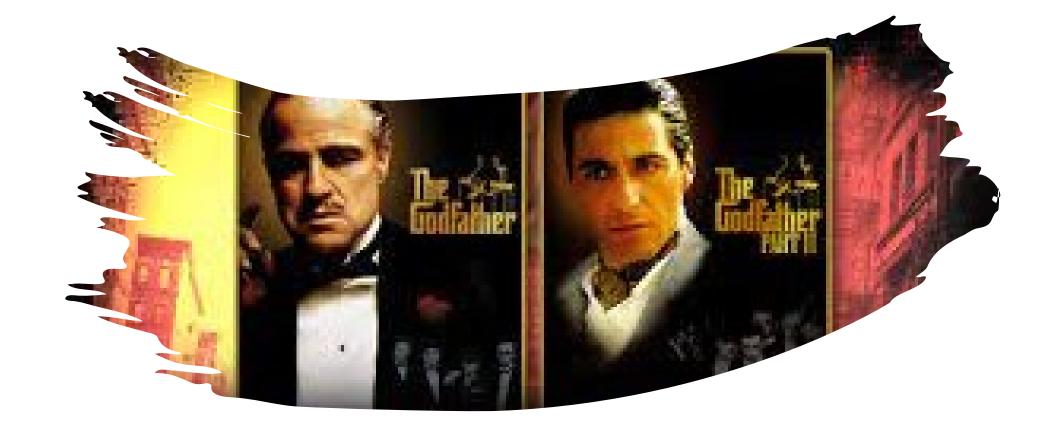
$$\phi_{1} = \beta$$

$$= \arg\left(-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}}\right)$$


$$\simeq \arg\left(\frac{1}{1-\rho-i\eta}\right)$$

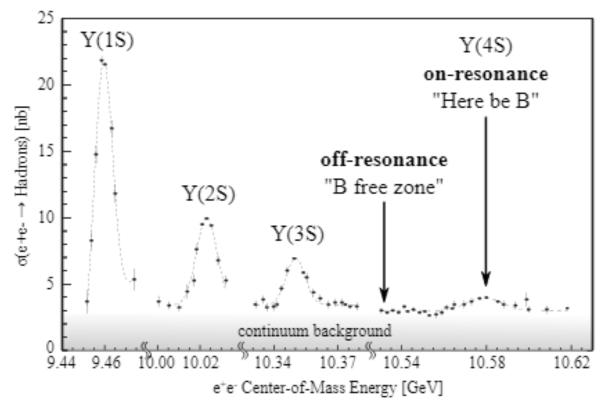
Over constraint – loop sensitivity


Tree level only


Loop-level only

NP at O(>TeV)?

eminar



Belle and Belle II

Will the next generation perform as well as the first?

Why B physics at the Y(4S)?

• The process $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ has comparable cross section to $e^+e^- \to q\bar{q}, q=u,d,s,c$ a.k.a. continuum

Why B physics at the Y(4S)?

• The process $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ has comparable cross section to $e^+e^- \to q\bar{q}, q=u,d,s,c$ a.k.a. continuum

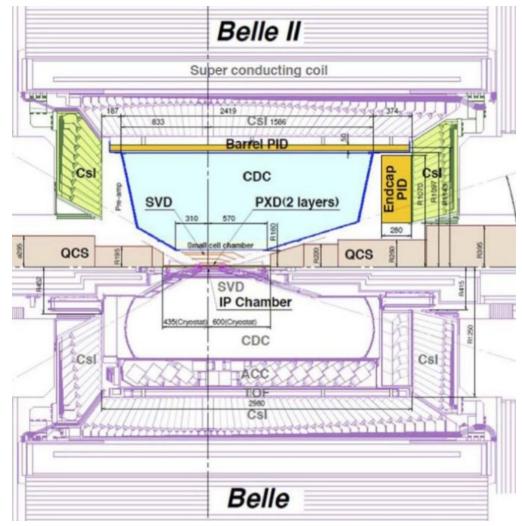
Advantages compared to proton-proton

- Low average multiplicity neutral reconstruction
- Constrained kinematics good missing momentum reconstruction
- Correlated $B^0 \bar{B}^0$ high flavour-tagging efficiency
- Open trigger 100% efficient for almost all B decays

Why B physics at the Y(4S)?

- The process $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ has comparable cross section to $e^+e^- \to q\bar{q}, q=u,d,s,c$ a.k.a. continuum
- Advantages compared to proton-proton
 - Low average multiplicity neutral reconstruction
 - Constrained kinematics good missing momentum reconstruction
 - Correlated $B^0 \bar{B}^0$ high flavour-tagging efficiency
 - Open trigger 100% efficient for almost all *B* decays
- Disadvantages compared to proton-proton
 - Cross section 150,000 times smaller
 - No B_s, B_c, or Λ_b produced can run at Y(5S) for B_s
 - No boost in the c.m. frame partially overcome by the asymmetric beams

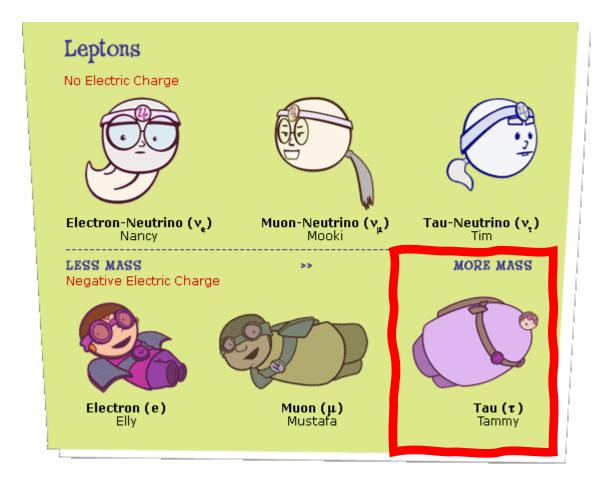
Detectors and data samples


- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, $b \rightarrow c\tau v$, direct CPV in B decay

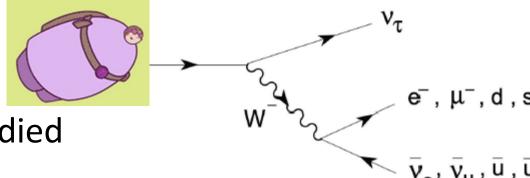
Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, $b \rightarrow c\tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
 - nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
 - World record 4.7×10³⁴ cm⁻²s⁻¹
 - Target 6×10^{35} cm⁻²s⁻¹
 - So far 362 fb⁻¹ at Y(4S)
 - + 42 fb⁻¹ off-resonance to characterize continuum

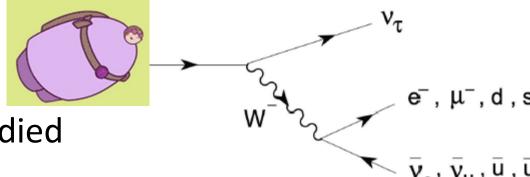
Detectors and data samples


- Belle + BaBar collected $0.71+0.43=1.14~ab^{-1}~Y(4S)$ samples
 - Many achievements: confirmation of KM mechanism, $b \rightarrow c\tau v$, direct CPV in B decay
- SuperKEKB + Belle II@KEK, Tsukuba
 - nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
 - World record 4.7×10³⁴ cm⁻²s⁻¹
 - Target 6×10^{35} cm⁻²s⁻¹
 - So far 362 fb⁻¹ at Y(4S)
 - + 42 fb⁻¹ off-resonance to characterize continuum

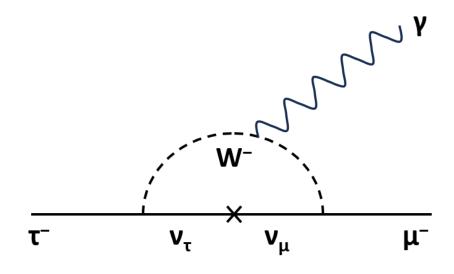
Interlude:


More than the B

https://www.quarked.org/


2) Why τ? Why Belle (II)?

Tau physics motivation I



- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction

Tau physics motivation I

- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SMsensitivity anticipated
 - Any observation of lepton-flavour violation in $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow l\varphi$ etc **new physics**
 - SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay

Tau physics motivation II

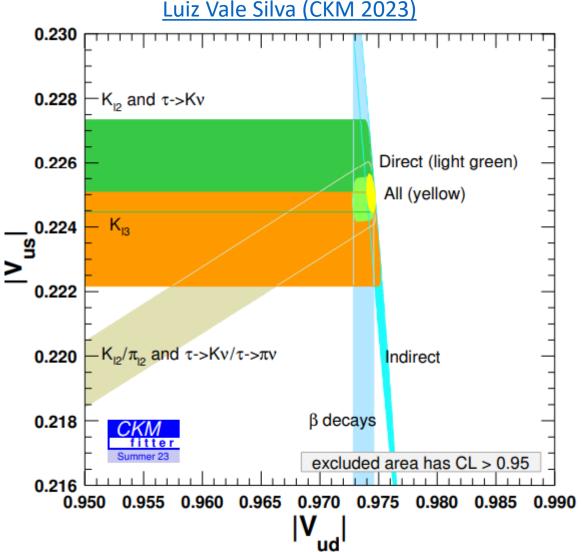
• **Precision measurements** of the τ lepton can have significant impact

2.29.2024 SNS Pisa Seminar 19

Tau physics motivation II

- **Precision measurements** of the τ lepton can have significant impact
- Example:
 - first row unitarity of CKM matrix 'Cabibbo angle anomaly'
 - $B(\tau \rightarrow Kv)/B(\tau \rightarrow \pi v)$ proportional to $|V_{us}/V_{ud}|^2$
 - Combine with lattice QCD information to provide additional constraint

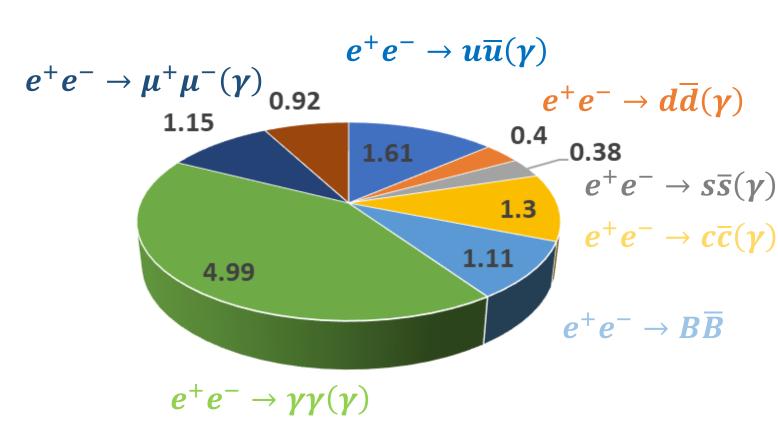
Luiz Vale Silva (CKM 2023) 0.228 K_{12} and τ ->Kv0.226 Direct (light green) All (yellow) K_{I3} 0.224 0.222 $-K_{12}/\pi_{12}$ and τ -> Kv/τ -> πv Indirect β decays 0.218 excluded area has CL > 0.95


0.965

0.975

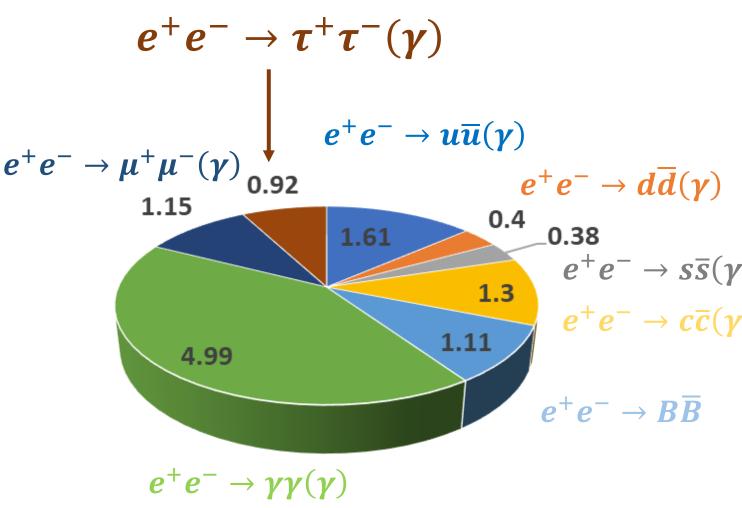
0.216

Tau physics motivation II


- **Precision measurements** of the τ lepton can have significant impact
- Example:
 - first row unitarity of CKM matrix 'Cabibbo angle anomaly'
 - $B(\tau \rightarrow Kv)/B(\tau \rightarrow \pi v)$ proportional to $|V_{us}/V_{ud}|^2$
 - Combine with lattice QCD information to provide additional constraint
- Additionally, lepton-flavour universality and dipole moments
- Mass and lifetime important inputs to these calculations

Why τ physics at the Y(4S)?

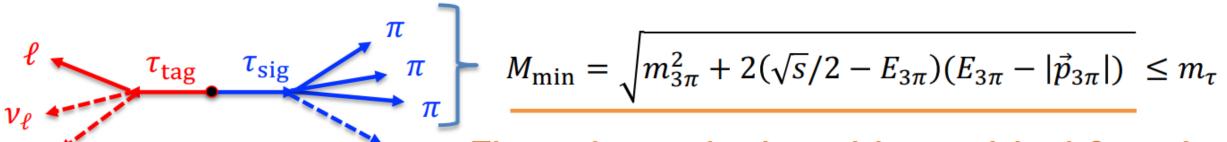
Non Bhabha cross section in nb


• The centre-of-mass energy of the B factories process $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ has comparable cross section to $e^+e^- \to q\bar{q}, q = e^+e^- \to \mu^+\mu^-(\gamma)_{0.92}$ u,d,s,c a.k.a. continuum

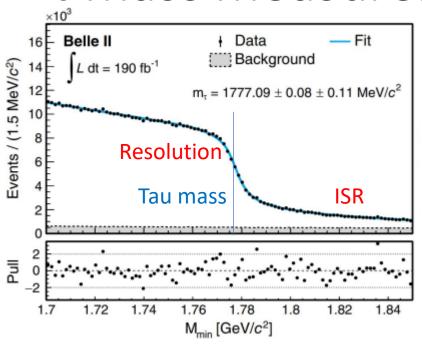
Why τ physics at the Y(4S)?

- The centre-of-mass energy of the B factories process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$ has comparable cross section to $e^+e^- \rightarrow q\bar{q}, q=u,d,s,c$ a.k.a. continuum
- Similar cross section for $e^+e^- \rightarrow \tau^+\tau^-$
- 920 million tau pairs per ab⁻¹ of integrated luminosity

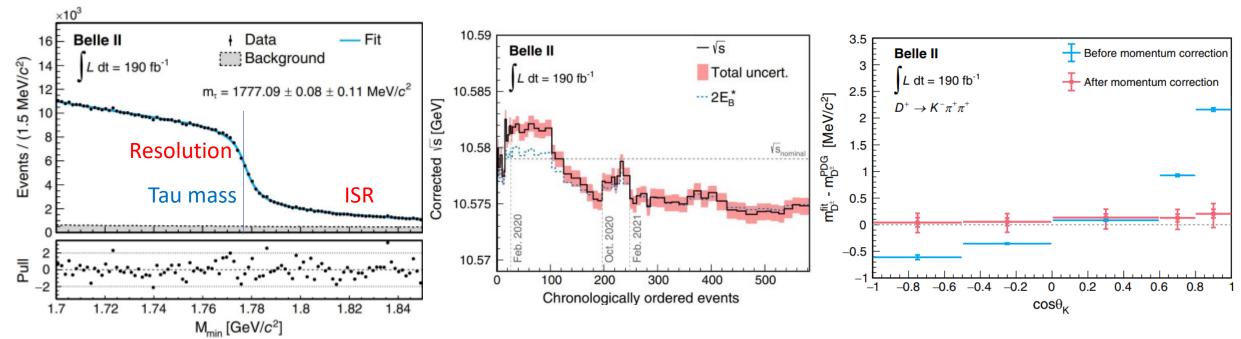
Non Bhabha cross section in nb

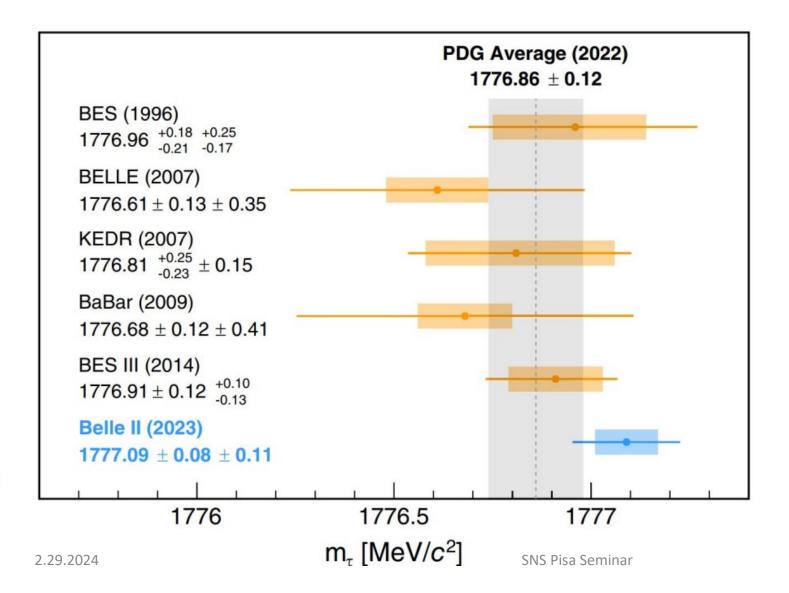

- Fundamental parameter of the standard model
 - Important input to lepton-flavour universality tests

$$R_e = \frac{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_\tau]}{\mathcal{B}[\mu^- \to e^- \bar{\nu_e} \nu_\mu]} \qquad \left(\frac{g_\tau}{g_\mu}\right)_e = \sqrt{R_e \frac{\tau_\mu}{\tau_\tau} \frac{m_\mu^3}{m_\tau^3} (1 + \delta_W) (1 + \delta_\gamma)} \quad \text{(\deltas are radiative corrections)}$$

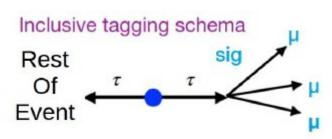

- Fundamental parameter of the standard model
 - Important input to lepton-flavour universality tests

$$R_e = \frac{\mathcal{B}[\tau^- \to e^- \bar{\nu_e} \nu_\tau]}{\mathcal{B}[\mu^- \to e^- \bar{\nu_e} \nu_\mu]} \qquad \left(\frac{g_\tau}{g_\mu}\right)_e = \sqrt{R_e \frac{\tau_\mu}{\tau_\tau} \frac{m_\mu^3}{m_\tau^3} (1 + \delta_W) (1 + \delta_\gamma)} \quad \text{(Ss are radiative corrections)}$$


We use the pseudomass variable to determine mass

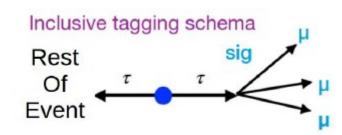

Fit to the endpoint with empirical function

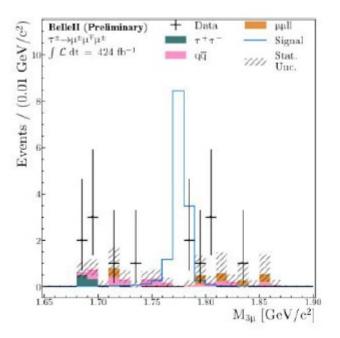
 Fit to distribution with analytic form that accounts for ISR and resolution

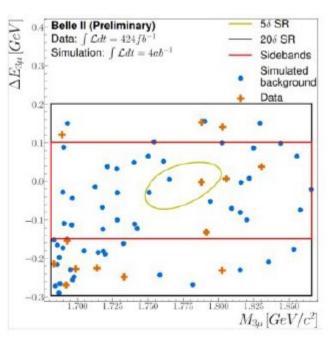

- Fit to distribution with analytic form that accounts for ISR and resolution
- Knowing the scale key: beam energy (from $E_{\rm B}^{*}$) and momentum (from D mass)

World's most precise measurement to date - dominant systematics from beam energy and momentum scale

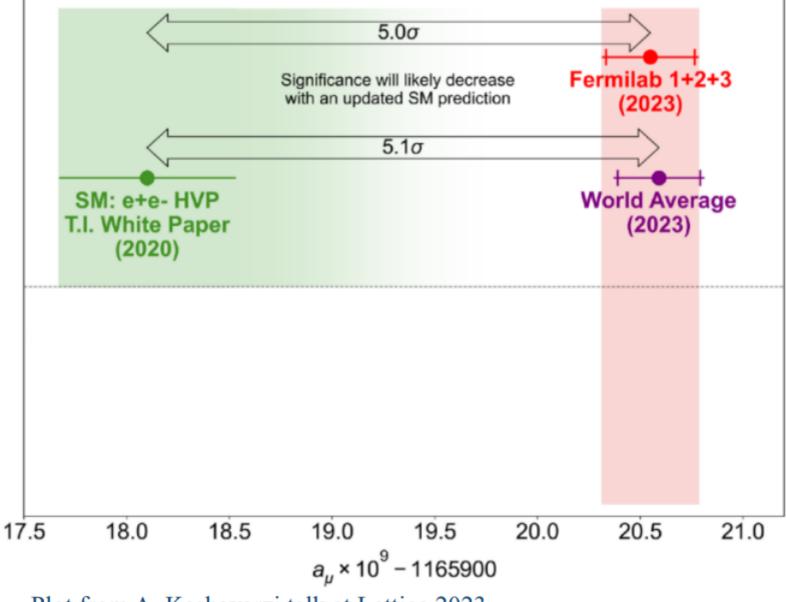
$\tau \rightarrow 3\mu$ — lepton flavour violation search


• Inclusive tag of the non-signal τ to increase efficiency — multivariate

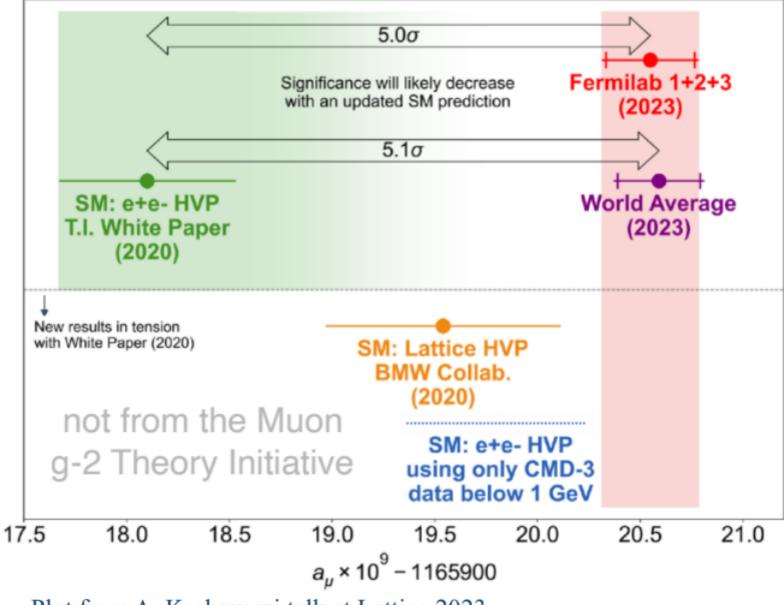



$\tau \rightarrow 3\mu$ — lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency – multivariate
- Cut 'n' count in 2D plane of


 - M_{3μ} and ΔE = E_{3μ}-E_{beam} (in c.m.)
 Sideband derived background estimate 0.5^{+1.4}_{-0.5} events
- One event observed
- World best limit
 - BF < 1.9×10^{-8} (90% c.l.)
- Area of competition
 - LHCb BF $< 4.1 \times 10^{-8}$ (Run 1 only)
 - CMS BF $< 2.9 \times 10^{-8}$ (Run 1+2)

...away from heavy flavour muon g-2



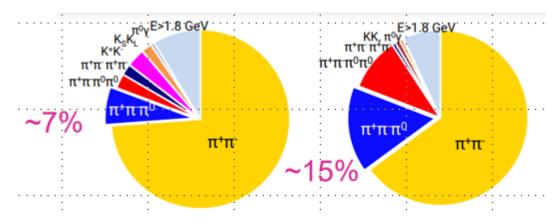
Plot from A. Keshavarzi talk at Lattice 2023

2.29.2024 SNS Pisa Seminar 31

...away from heavy flavour muon g-2

Plot from A. Keshavarzi talk at Lattice 2023

Paper in preparation


$$\sigma(e^+e^-
ightarrow \pi^+\pi^-\pi^0)$$

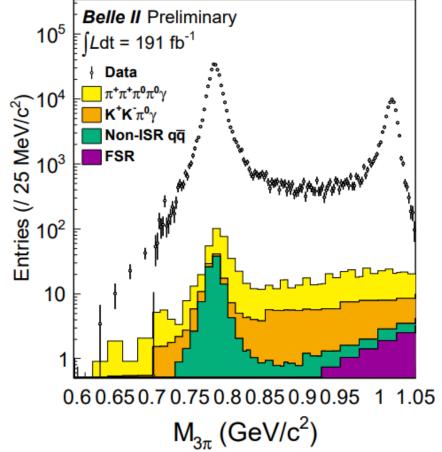
Muon anomalous magnetic moment

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm QCD}$$
 Hadron contribution term
$$a_{\mu}^{\rm QCD} = a_{\mu}^{\rm HVP} + a_{\mu}^{\rm HLbL}$$
 :

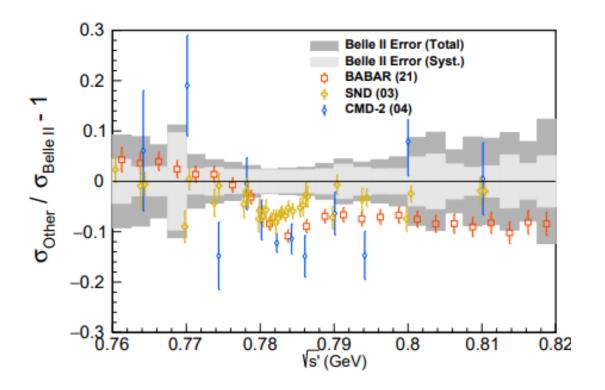
Leading-order HVP rerm

2nd largest contribution to the hadronic vacuum polarization estimate as region below 1 GeV in c.m. energy dominates

$$\sigma(e^+e^- o\pi^+\pi^-\pi^0)$$


- Initial-state radiation technique wide invariant mass range
- Partial Run 1 data set 191 fb⁻¹
- Selection via kinematic fits
- Key challenge is π^0 efficiency
 - Custom determination using ω decay
- Background control samples for $e^+e^- \to \pi^+\pi^-\pi^0 \; \pi^0\gamma_{ISR}, e^+e^- \to q\bar{q}\gamma_{ISR}$ and $e^+e^- \to K^+K^-\pi^0\gamma_{ISR}$

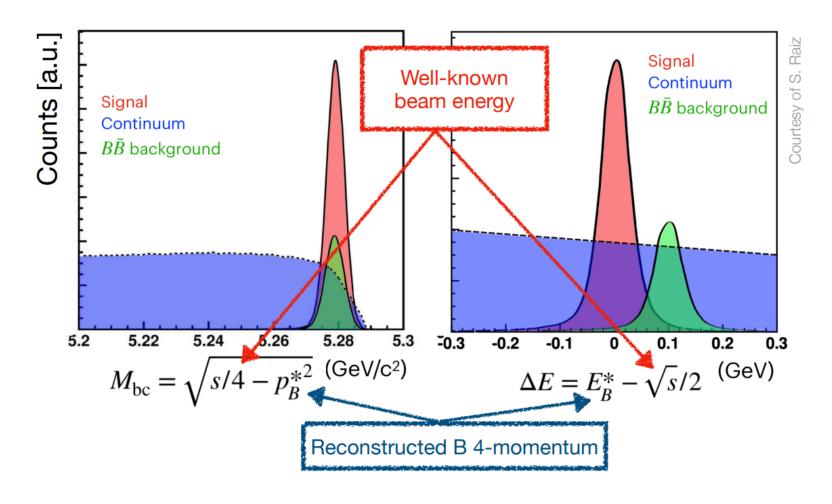
Signal process :
$$e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-\pi^0 (\rightarrow \gamma\gamma)$$


Signal spectrum Efficiency
$$\frac{dN_{\rm signal}}{dm} = \sigma_{ee \rightarrow 3\pi} \cdot \varepsilon \cdot \frac{d\mathcal{L}_{\rm eff}}{dm}$$

Signal spectrum Efficiency
$$\frac{dN_{\rm signal}}{dm} = \sigma_{ee \rightarrow 3\pi} \cdot \varepsilon \cdot \frac{d\mathcal{L}_{\rm eff}}{dm}$$

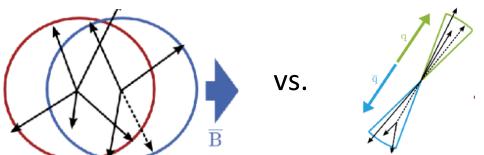
Cross section Effective luminosity

$$\sigma(e^+e^- o\pi^+\pi^-\pi^0)$$

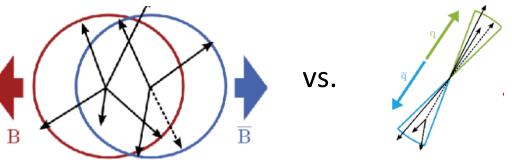

Source Trigger ISR photon detection	0.1	$5 \text{ GeV/}c^2 (-0.09)$
ISR photon detection		(-0.09)
•	0 =	(0.00)
	0.7	(+0.15)
Tracking	0.8	(-1.35)
π^0 detection	1.0	(-1.43)
Kinematic fit (χ^2)	0.6	(+0.0)
Event selection	0.2	(-1.90)
Generator	1.2	
Integrated luminosity	0.6	
Radiative corrections	0.5	
MC statistics	0.2	
Background subtraction	0.3 – 0.5	
Unfolding	0.7 - 15	
Total uncertainty	2.2-15	
(Total correction $\varepsilon/\varepsilon_{\rm MC}-1$)		(-4.61)

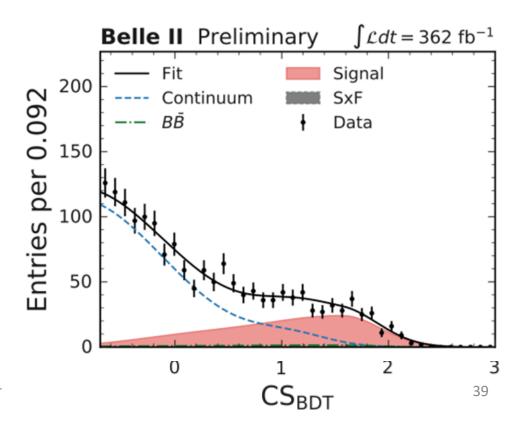
$$a_{\mu}^{3\pi} = (49.02 \pm 0.23 \pm 1.07) \times 10^{-10},$$

2.6σ tension with BaBar

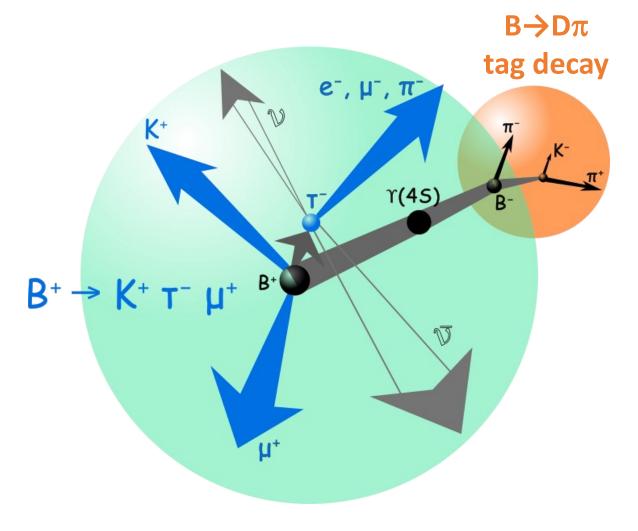

....back to the B and CP violation

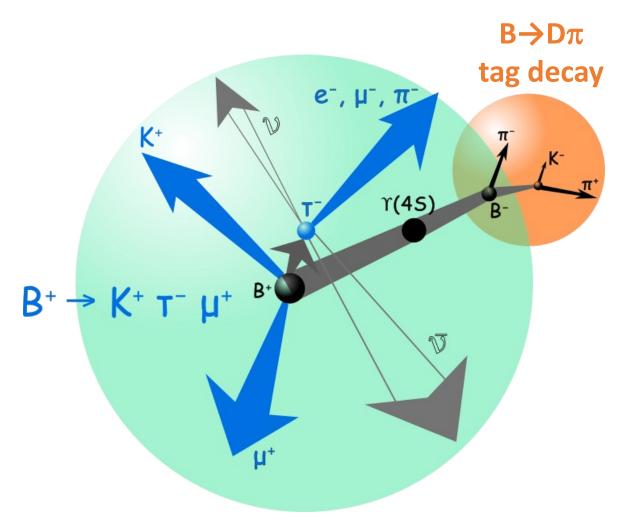
B-factory analysis essentials 1 – beam constrained kinematics


B-factory analysis essentials 2 – continuum suppression

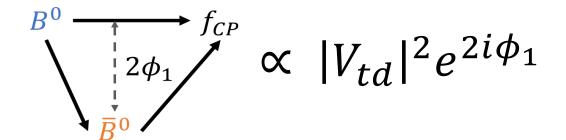

- In the c.m. frame B mesons almost at rest when they decay
 - isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
 - jetlike distribution of particles

B-factory analysis essentials 2 – continuum suppression

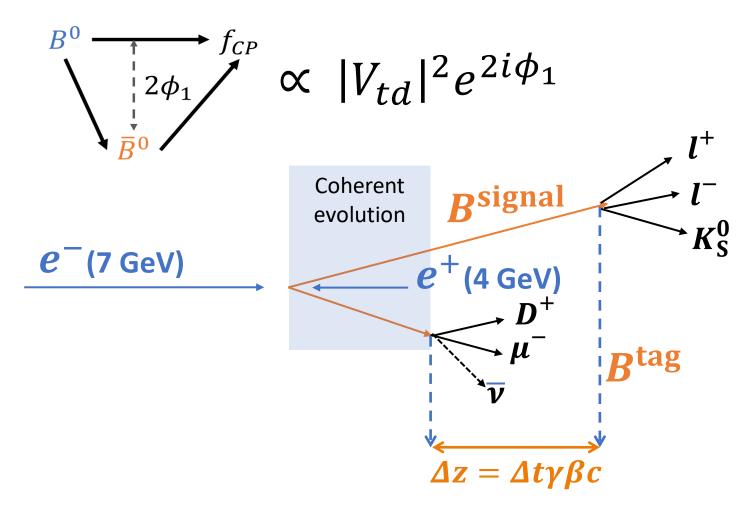

- In the c.m. frame B mesons almost at rest when they decay
 - isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
 - jetlike distribution of particles
- Shape variables, e.g., thrust and Fox-Wolfram moments, help distinguish topologies
- Ideal task for machine-learning
- Output oft used as a fit variable

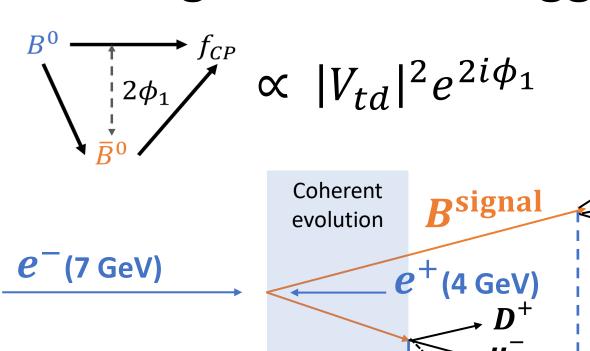

B-factory analysis essentials 3: hadronic tag

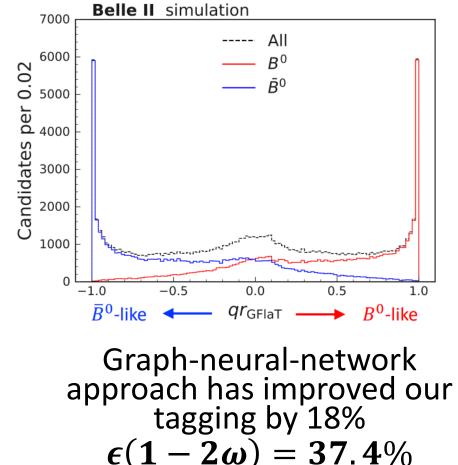
- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - B \rightarrow D^{(*)0} m π^{\pm} n π^{0} , where m \geq 1 n \geq 0
- Reconstruct other B as signal with missing energy



B-factory analysis essentials 3: hadronic tag

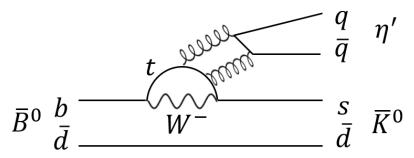

- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - B \rightarrow D^{(*)0} m π^{\pm} n π^{0} , where m \geq 1 n \geq 0
- Reconstruct other B as signal with missing energy
- Machine learning algorithm used to boost efficiency as much as possible
 B⁺ → K⁺ T
 - Comput. Softw. Big Sci. 3 (2019) 1, 6
- Total efficiency < 1% but a powerful tool
- Requires calibration


B-factory analysis essentials 4 – vertexing and flavour tagging


B-factory analysis essentials 4 – vertexing and flavour tagging

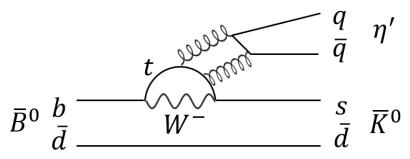
B-factory analysis essentials 4 – vertexing and flavour tagging

Flavour-tagging key: leptons, kaons, high momentum tracks etc

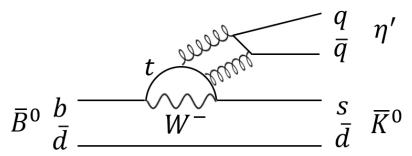


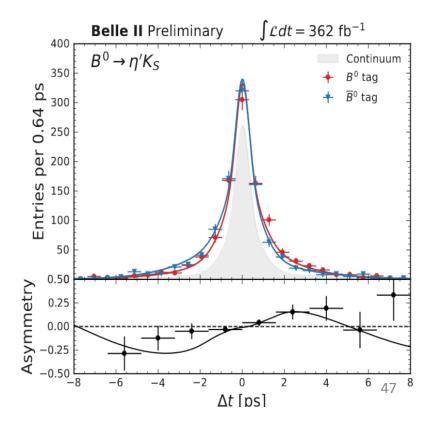
$$\epsilon(1-2\omega)=37.4\%$$

 $\Delta z = \Delta t \gamma \beta c$


Time-dependent *CP* violation - $B^0 o \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \to c\bar{c}s$ transitions such as $B^0 \to J/\psi K_S^0$


Time-dependent *CP* violation - $B^0 o \eta' K_S^0$


- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \to c\bar{c}s$ transitions such as $B^0 \to J/\psi K_S^0$
- Reconstructing $\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \to \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output

Time-dependent *CP* violation - $B^0 \to \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \to c\bar{c}s$ transitions such as $B^0 \to J/\psi K_S^0$
- Reconstructing $\eta' \to \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \to \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output
- $\sin 2\phi_1 = 0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $b \rightarrow c\bar{c}s$ result

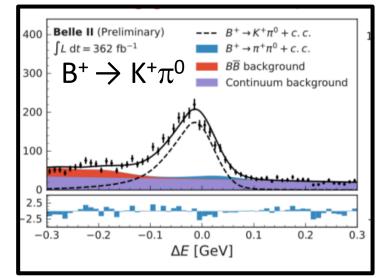
Phys. Rev. D 109, 012001 (2024) and Phys. Rev. Lett. 131, 111803 (2023)

$B \rightarrow K\pi$ isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – PRD 59, 113002 (1999)

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

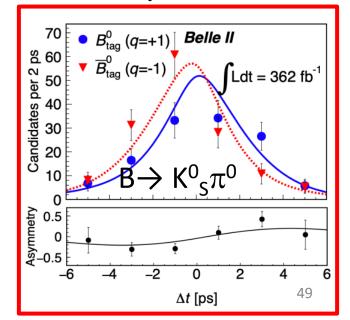
• All inputs measured at Belle II including 'no vertex' time-dependent *CP* asymmetry for B \rightarrow K 0 s π^0 – 362 fb $^{-1}$ sample


$B \rightarrow K\pi$ isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – PRD 59, 113002 (1999)

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

All inputs measured at Belle II including 'no vertex' time-dependent


CP asymmetry for B \rightarrow K 0 _S π^0 – 362 fb $^{\text{-}1}$ sample

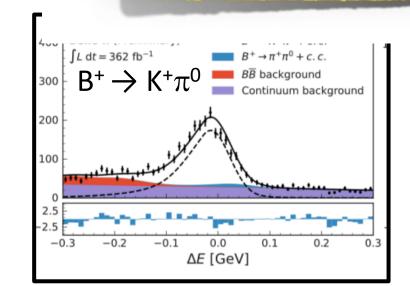
$$B = (14.2 \pm 0.4 \pm 0.9) \times 10^{-6}$$

Large π^0 efficiency syst.

$$A_{K^0} = -0.01 \pm 0.12 \pm 0.05$$

Combination of time-dependent
and time-integrated analyses

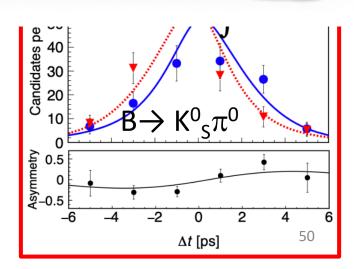
SNS Pisa Seminar

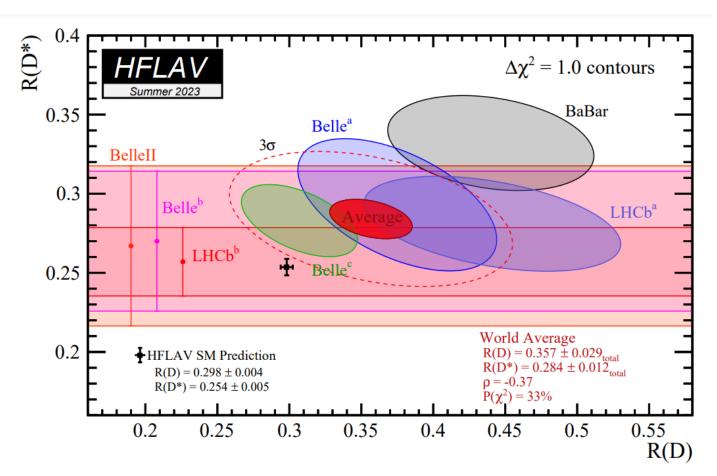


$B \rightarrow K\pi$ isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – PRD 59, 113002 (1999)

$$I_{K\pi} = (-3 \pm 13 \pm 5) \%$$


Agrees with SM. Competitive with WA: $(-13 \pm 11)\%$.

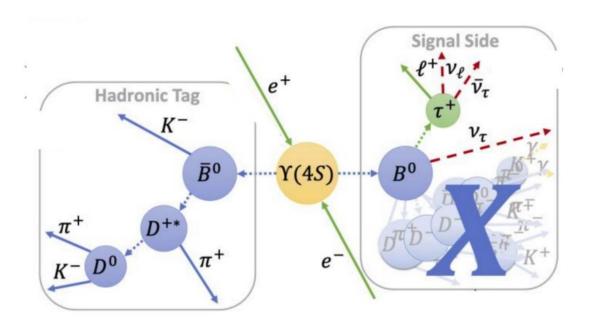


Large π^0 efficiency syst.

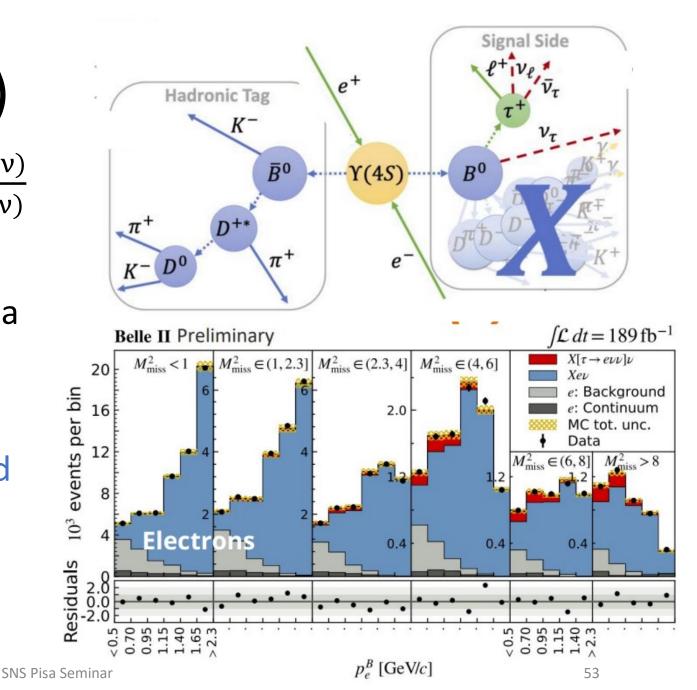
$$A_{K^0} = -0.01 \pm 0.12 \pm 0.05$$

Combination of time-dependent
and time-integrated analyses

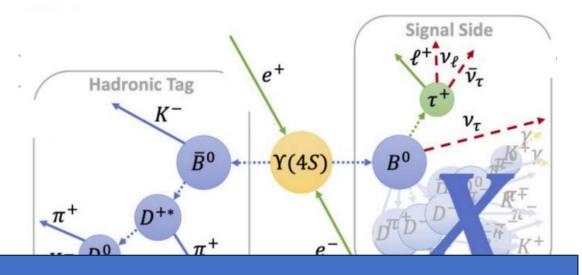
SNS Pisa Seminar



4) Lepton flavour/universality violation and rare decays


Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$
 - A complementary alternative to R(D^(*))
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample

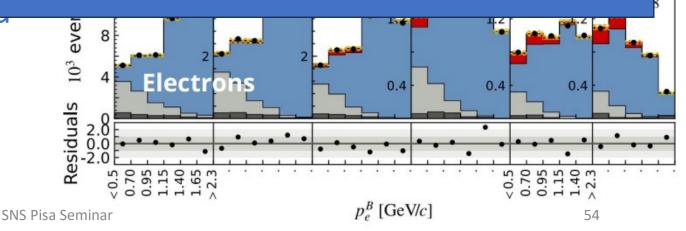

Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$
 - A complementary alternative to R(D^(*))
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample
- Use missing-mass squared and lepton momentum to isolate signal above B→XIv background
- Background templates calibrated to control samples and sidebands

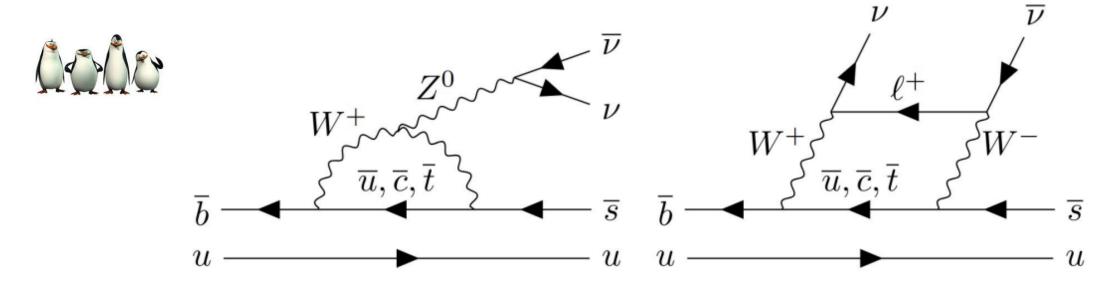
Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$
 - A complementary alternative to

$R(X)=0.228\pm0.016$ (stat) ±0.036 (syst)

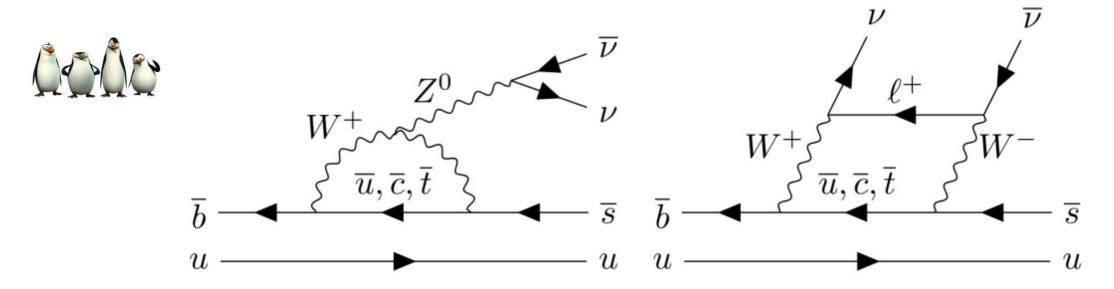

Systematics dominated by control sample reweighting procedures

First at B factories


Agrees with SM prediction and the WA R(D(*)) values

SIBILIAI ABOVE D / MIV BACKBLOALIA

 Background templates calibrated to control samples and sidebands

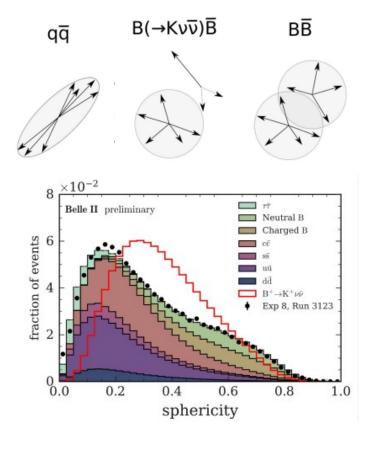


$B^+ \to K^+ \nu \overline{\nu}$: Motivation

- Well known in SM but very sensitive to BSM enhancements 3rd gen
 - $B(B \rightarrow K^+ vv) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$

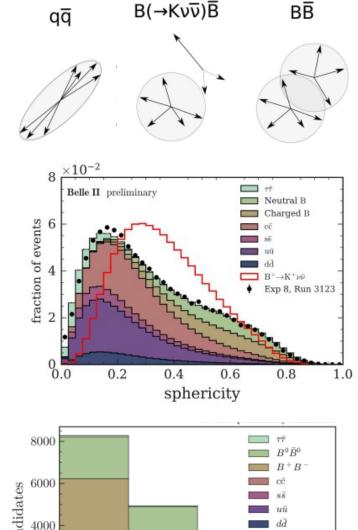
$B^+ \to K^+ \nu \overline{\nu}$: Motivation

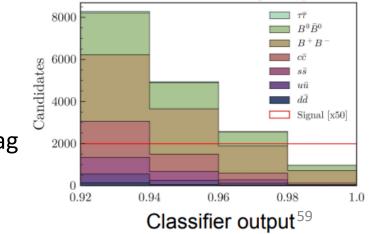
- Well known in SM but very sensitive to BSM enhancements 3rd gen
 - B(B \rightarrow K⁺vv)=(5.6±0.4) × 10⁻⁶ [arXiv:2207.13371]
- Challenging experimentally
 - Low branching fraction with large background
 - No peak two neutrinos leads to no good kinematic constraint

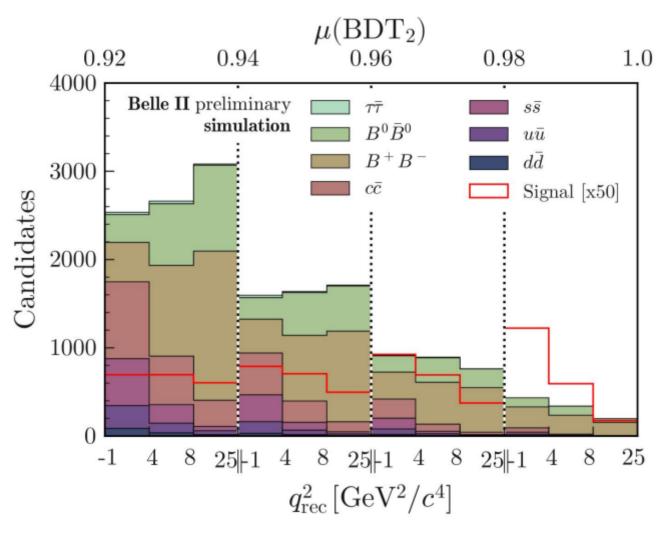

<u>arXiv:2311.14647</u> [hep-ex]

$B^+ \to K^+ \nu \overline{\nu}$: Analysis strategy

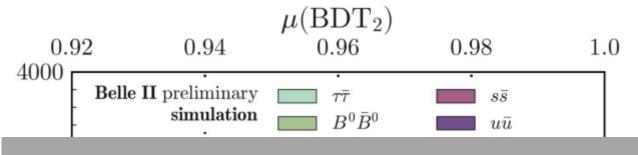
- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag


$B^+ o K^+ \nu \overline{\nu}$: Analysis strategy


- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity


$B^+ o K^+ \nu \overline{\nu}$: Analysis strategy

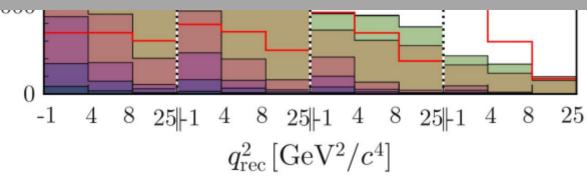
- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity
 - 4. BDT2 fit extraction variable in bins of $\nu \bar{\nu}$ mass-squared q^2
 - Hadronic tag: single BDT for fit
 - key variable any additional calorimeter energy other than K+tag


$B^+ \to K^+ \nu \overline{\nu}$: Inclusive signal extraction

- 1 signal and 7 background templates from simulation
 - corrected using control samples
- Profile maximum likelihood fit inc. systematic uncertainties
- Continuum template constrained by offresonance

(3 bins in q^2_{rec}) x (4 bins in $\mu(BDT_2)$)

$B^+ \to K^+ \nu \overline{\nu}$: Inclusive signal extraction

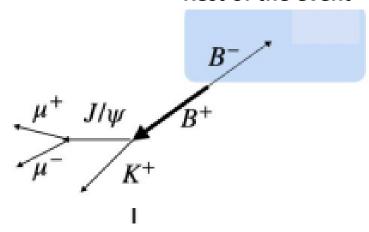

 1 signal and 7 background templates

Two questions

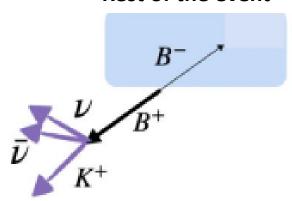
Two questions

1.Is the signal efficiency, i.e., BDT, w

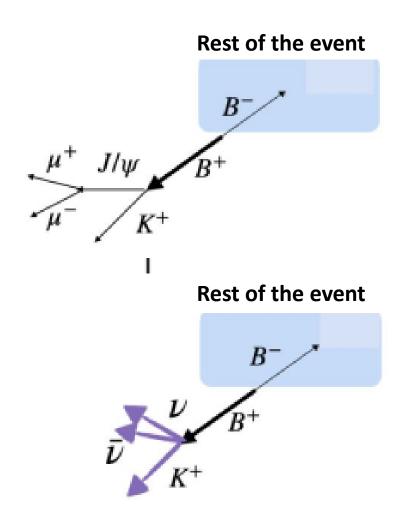
2.Is the B background understood? 1.1s the signal efficiency, i.e., BDT, well modelled?

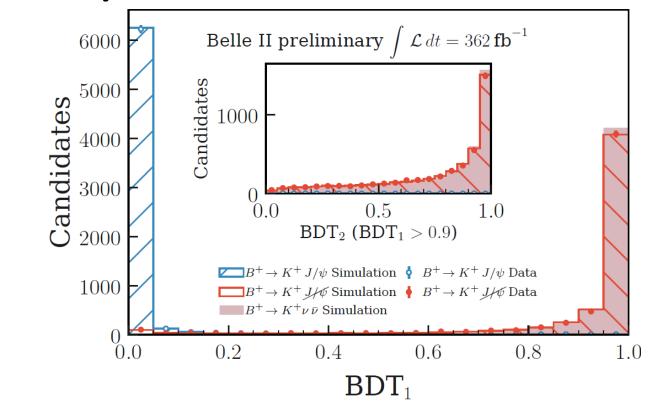


 Continuum template constrained by offresonance


(3 bins in q^2_{rec}) x (4 bins in $\mu(BDT_2)$)

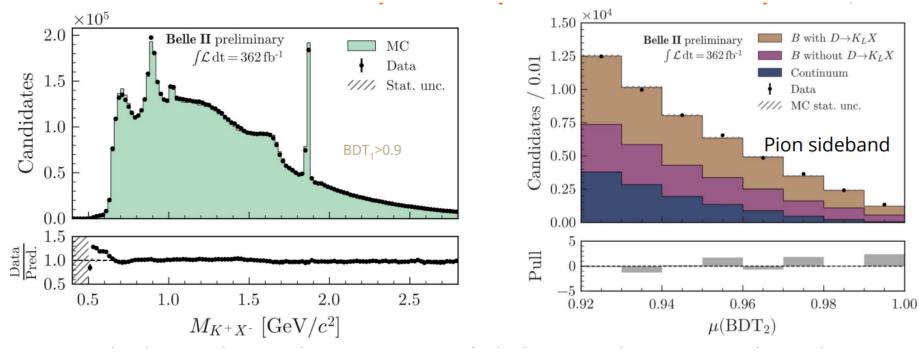
$B^+ o K^+ u \overline{ u}$: Efficiency validation


Rest of the event



Rest of the event

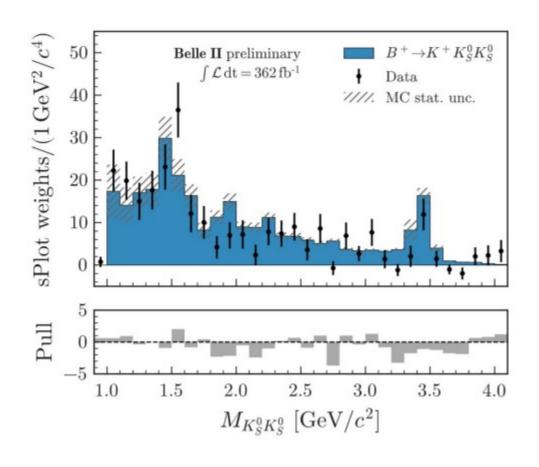
$B^+ o K^+ u \overline{ u}$: Efficiency validation



Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

$B^+ \rightarrow K^+ \nu \bar{\nu}$:

>90% background from $B \rightarrow D(K^+X)Iv + B \rightarrow D(K_LX)K^+$

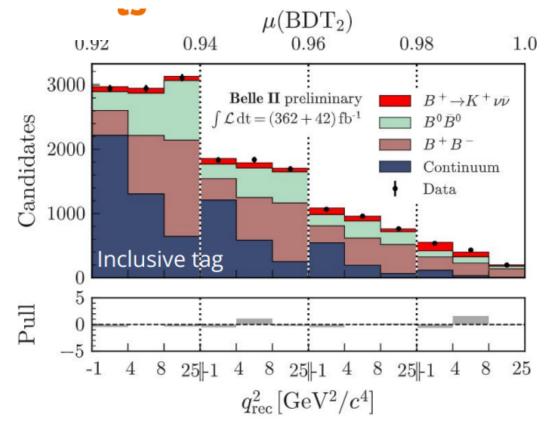


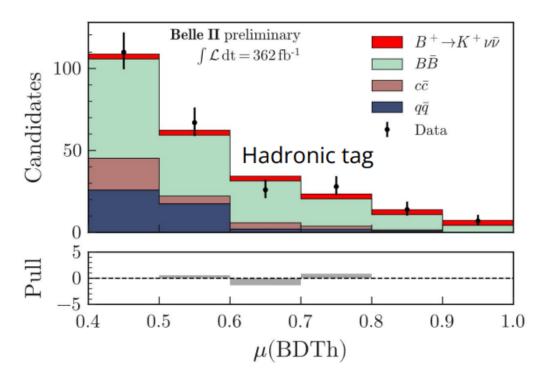
- KX system agrees well between data and MC
- Prompt K⁺ production studied using prompt π^+ from B⁺ $\rightarrow \pi^+$ X decays
- Systematic uncertainties on decay branching fractions, enlarged for D→K_LX and B →D**I v

$B^+ \to K^+ \nu \overline{\nu}$: Background validation example

- An example of a difficult background is charmless $B^+ \to K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal

$B^+ \to K^+ \nu \overline{\nu}$: Background validation example

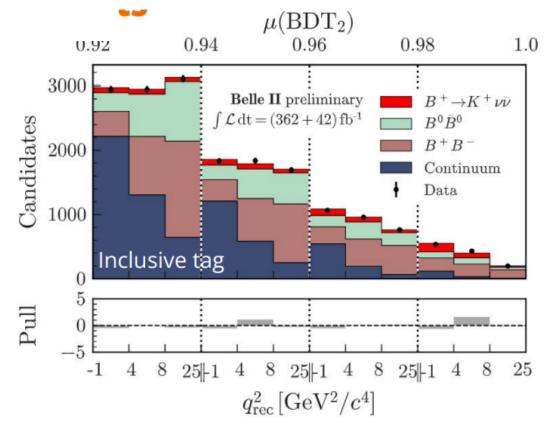


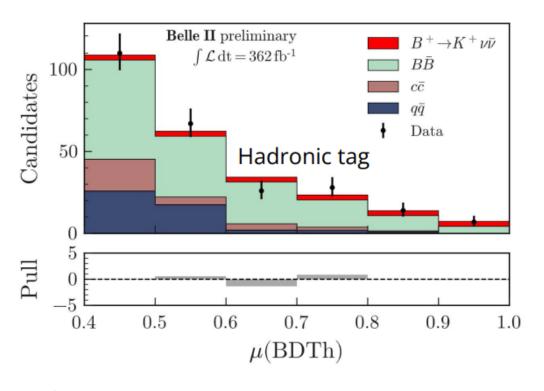

- An example of a difficult background is charmless $B^+ \to K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal
- Dedicated studies $B^+ \to K^+ K_S^0 K_S^0$ show good modelling
 - generous systematics assigned
- Similar studies for $B^+ \to K^+ n \bar{n}, B^+ \to K^+ K_L^0 K_S^0$

$B^+ \to K^+ \nu \overline{\nu}$: Systematic uncertainties

Source	Correction	Uncertainty type	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background	—	Global, 2 NP	50%	0.88
Normalization of continuum background	<u></u> 11	Global, 5 NP	50%	0.10
Leading B-decays branching fractions		Shape, 5 NP	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K_{\rm L}^0 K_{\rm L}^0$	q^2 dependent $O(100\%)$	Shape, 1 NP	20%	0.49
p-wave component for $B^+ \to K^+ K_{\rm S}^0 K_{\rm L}^0$	q^2 dependent $O(100\%)$	Shape, 1 NP	30%	0.02
Branching fraction for $B \to D^{(**)}$	_	Shape, 1 NP	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	q^2 dependent $O(100\%)$	Shape, 1 NP	100%	0.20
Branching fraction for $D \to K_L X$	+30%	Shape, 1 NP	10%	0.14
Continuum background modeling, BDT _c	Multivariate $O(10\%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity	_	Global, 1 NP	1%	< 0.01
Number of $B\bar{B}$	_	Global, 1 NP	1.5%	0.02
Off-resonance sample normalization	_	Global, 1 NP	5%	0.05
Track finding efficiency		Shape, 1 NP	0.3%	0.20
Signal kaon PID	p, θ dependent $O(10-100\%)$	Shape, 7 NP	O(1%)	0.07
Photon energy scale	_	Shape, 1 NP	0.5%	0.08
Hadronic energy scale	-10%	Shape, 1 NP	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency	_	Global, 1 NP	3%	0.03
MC statistics	_	Shape, 156 NP	O(1%)	0.52

$B^+ \to K^+ \nu \overline{\nu}$: Results




$$BF_{inc} = (2.8 \pm 0.5(stat) \pm 0.5(syst)) \times 10^{-5}$$

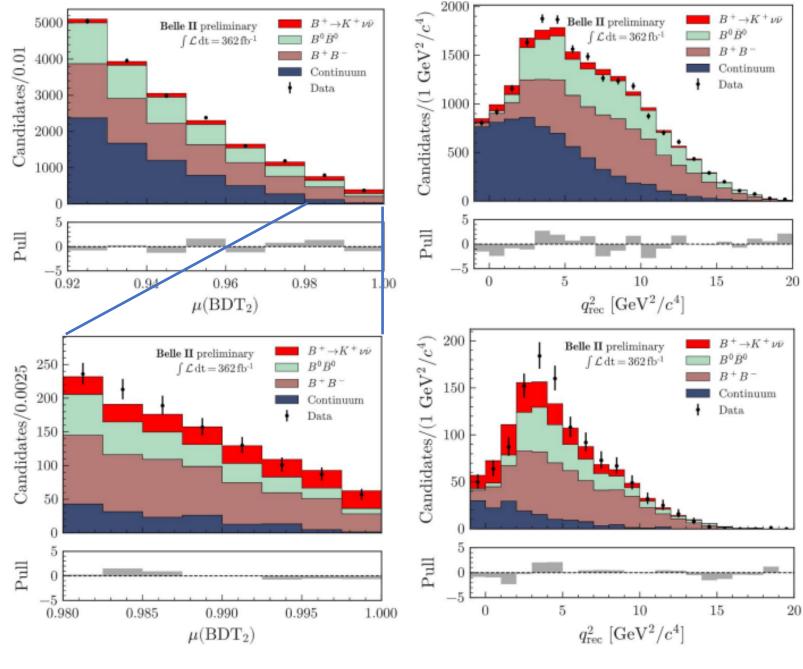
$$BF_{had} = \left(1.1^{+0.9}_{-0.8}(stat)^{+0.8}_{-0.5}(syst)\right) \times 10^{-5}$$

$$BF_{comb} = \left(2.4 \pm 0.5(stat)^{+0.5}_{-0.4}(syst)\right) \times 10^{-5}$$

$B^+ \to K^+ \nu \overline{\nu}$: Results

$$BF_{inc} = (2.8 \pm 0.5(stat) \pm 0.5(syst)) \times 10^{-5}$$

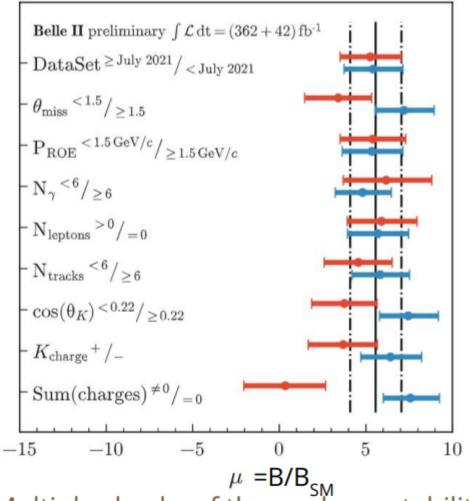
$$BF_{had} = \left(1.1^{+0.9}_{-0.8}(stat)^{+0.8}_{-0.5}(syst)\right) \times 10^{-5}$$

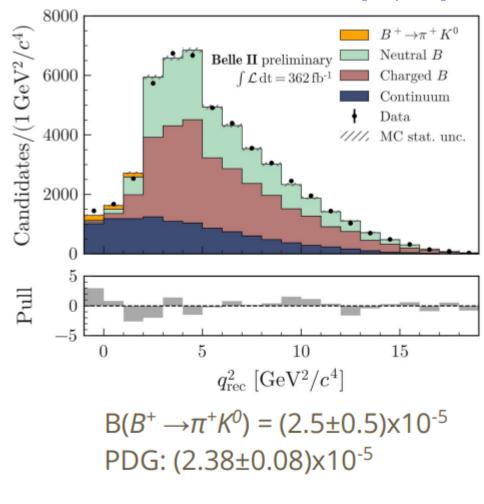

$$BF_{comb} = \left(2.4 \pm 0.5(stat)^{+0.5}_{-0.4}(syst)\right) \times 10^{-5}$$

Combined result Evidence @ 3.6σ Tension with SM (0.6×10^{-5}) @ 2.8σ

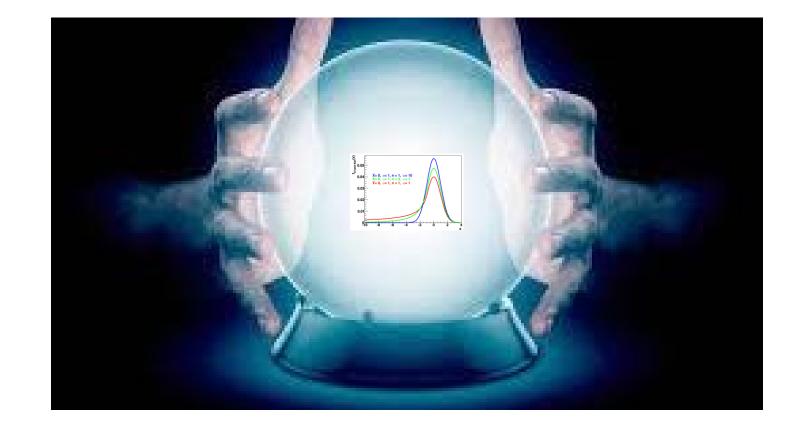
Post-fit distributions

Upper: full fit region


Lower: most sensitive region

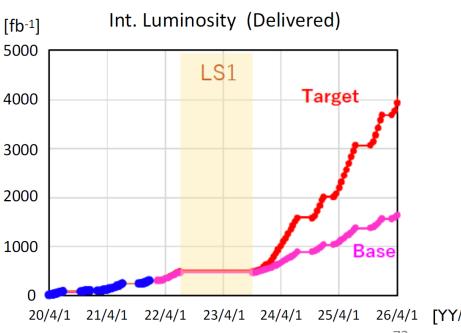


arXiv:2311.14647 [hep-ex]


Cross checks

arXiv:2311.14647 [hep-ex]

- Multiple checks of the analyses stability, including tests dividing data into approximately equal sub-samples. Reported here as measured branching fraction divided by SM expectation, μ =B/B_{SM}.
- Control measurement of $B^+ \to \pi^+ K^0$ decay



5) Prospects and conclusion

Belle II: after current shutdown

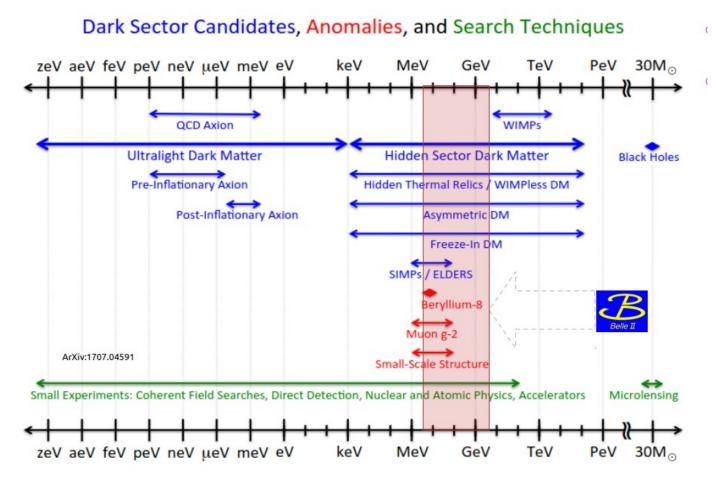
- We have not collected the sample size planned to date
 - Beam conditions
- Since summer 2022 until last week shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
 - two-layer pixel detector installed
- On target to restart SuperKEKB in December
- Path to 2×10^{35} cm $^{-2}$ s $^{-1}$ but new final focus to go beyond
- Proposed upgrade from 2028+
 - J. Baudot FPCP 2023

Conclusion

- e⁺e⁻ has an important role to play and a bright future in flavour
 - Belle II is catching up to first generation sample size, we are producing competitive and exciting results
 - A lot more to come once we enter the "10³⁵ era"
 - Not discussed today: dark sector, charm and spectroscopy
- Upgrade plans for reaching the 10s of ab⁻¹

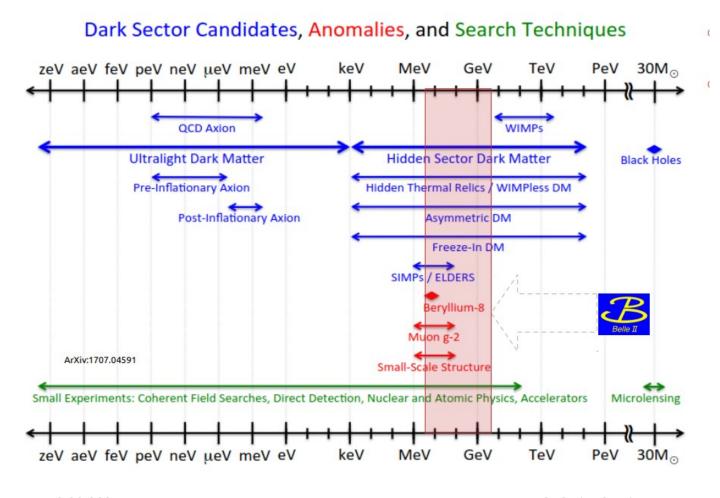
Backup

Belle II upgrade


Belle III + ChiralSuperKEKB > 2030+

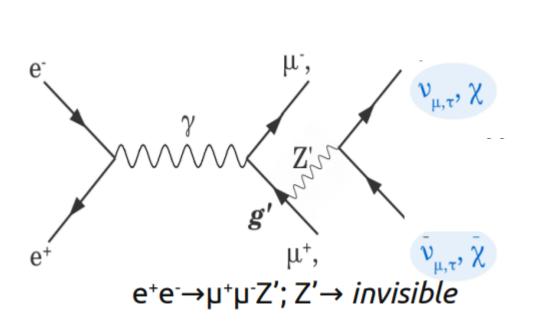
- Many plans and possibilities
- Work on a Conceptual Design Report begun to be delivered in 2023
- Followed by a Technical Design Report in 2024
- Shutdown end of 2027 for installation
- Accumulate 10s of ab⁻¹ into the 2030s

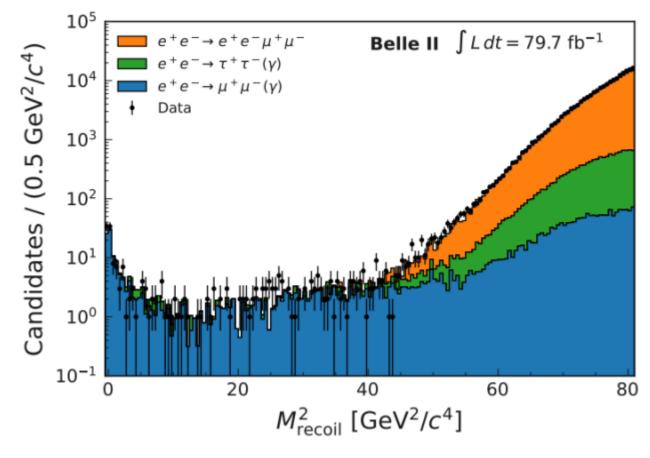
EOI	Upgrade ideas scope and technology	Time scale
DMAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2
SOI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI	LS2
Thin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2
CDC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2
ТОР	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later
ECL	Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.	> LS2
KLM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later
Trigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later
STOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2
TPC	TPC option under study for longer term upgrade	> LS2


J. Baudot FPCP 2023

Light dark sector searches

- Can access the mass range favored by light dark sector
 - Possible sub-GeV scenario

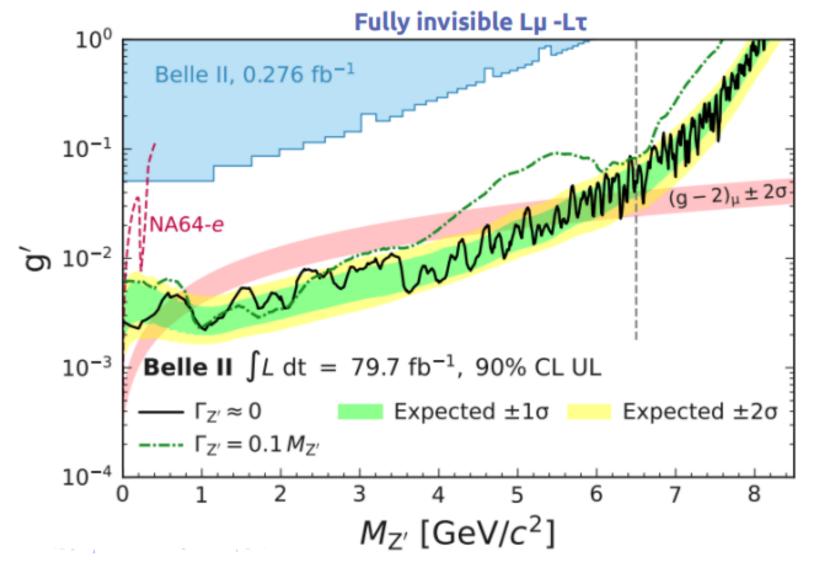

Light dark sector searches



- Can access the mass range favored by light dark sector
 - Possible sub-GeV scenario
- DM weakly coupled to SM through a light mediator X:
 - vector (Z'/dark photon), axion like particles (ALPs), scalar (dark Higgs) or fermions (sterile v)
- Some links to anomalies,
 e.g., g-2

Invisible decay of Z' to dark matter

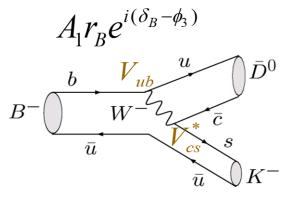
Search for narrow peak in the recoil mass of dimuon pairs



Invisible decay of Z' to dark matter

- Limits on Z' coupling g' and mass
- g_μ-2 region ruled out for masses from 0.8 to 5 GeV

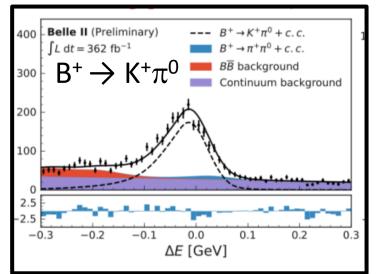

Phys. Rev. Lett. 130, 231801 (2023)



Paper in preparation

γ/Φ_3 : power of Belle + Belle II

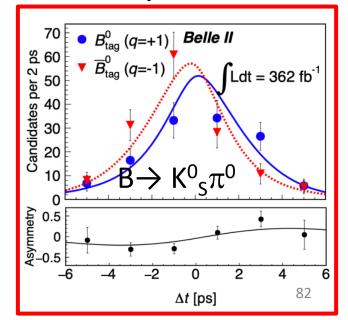
- Standard candle in the SM
 - Tree-level only + no theory unc.
- LHCb leads the way: $\gamma = (63.8 \pm 3.6)^{\circ}$
 - LHCB-CONF-2022-003


$B \rightarrow K\pi$ isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – PRD 59, 113002 (1999)

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

All inputs measured at Belle II including 'no vertex' time-dependent


CP asymmetry for B \rightarrow K $^{0}_{S}\pi^{0}$ – 362 fb $^{-1}$ sample

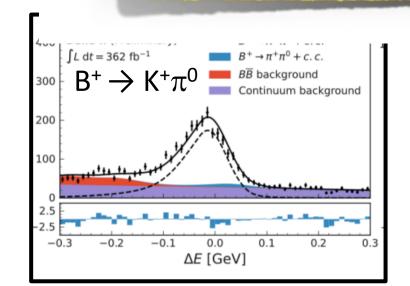
$$B = (14.2 \pm 0.4 \pm 0.9) \times 10^{-6}$$

Large π^0 efficiency syst.

$$A_{K^0} = -0.01 \pm 0.12 \pm 0.05$$

Combination of time-dependent
and time-integrated analyses

SNS Pisa Seminar



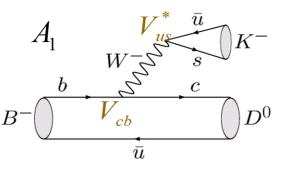
$B \rightarrow K\pi$ isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – PRD 59, 113002 (1999)

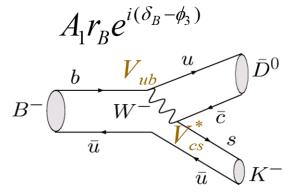
$$I_{K\pi} = (-3 \pm 13 \pm 5) \%$$

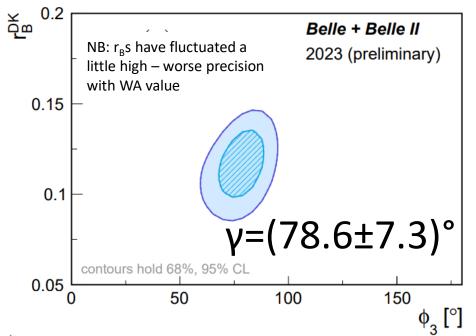

Agrees with SM. Competitive with WA: $(-13 \pm 11)\%$.

Large π^0 efficiency syst.


$$A_{K^0} = -0.01 \pm 0.12 \pm 0.05$$

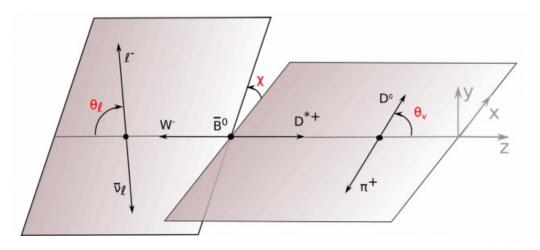
Combination of time-dependent
and time-integrated analyses


SNS Pisa Seminar

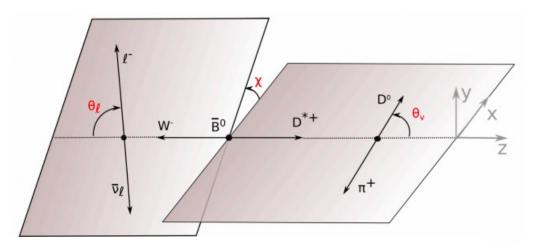


γ/Φ_3 : power of Belle + Belle II

- Standard candle in the SM
 - Tree-level only + no theory unc.
- LHCb leads the way: $\gamma = (63.8 \pm 3.6)^{\circ}$
 - LHCB-CONF-2022-003
- Several Belle (711 fb⁻¹) + Belle II measurements (varying sample size) – total O(1 ab ⁻¹)
 - D \rightarrow K⁰_s hh JHEP 02 (2022) 063
 - D \rightarrow K⁰_S K π <u>accepted by JHEP</u>
 - D \rightarrow K⁰_S π ⁰, KK <u>arXiv:2308.05048</u>
 - + Belle-only D \rightarrow K π and others
- A few ab ⁻¹ will give a good cross check of this SM parameter

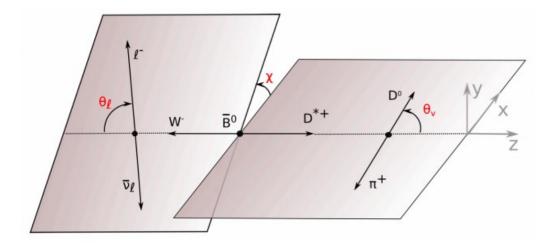


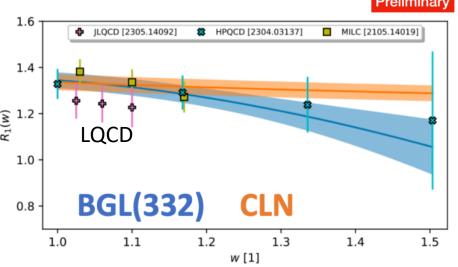
Belle paper in preparation

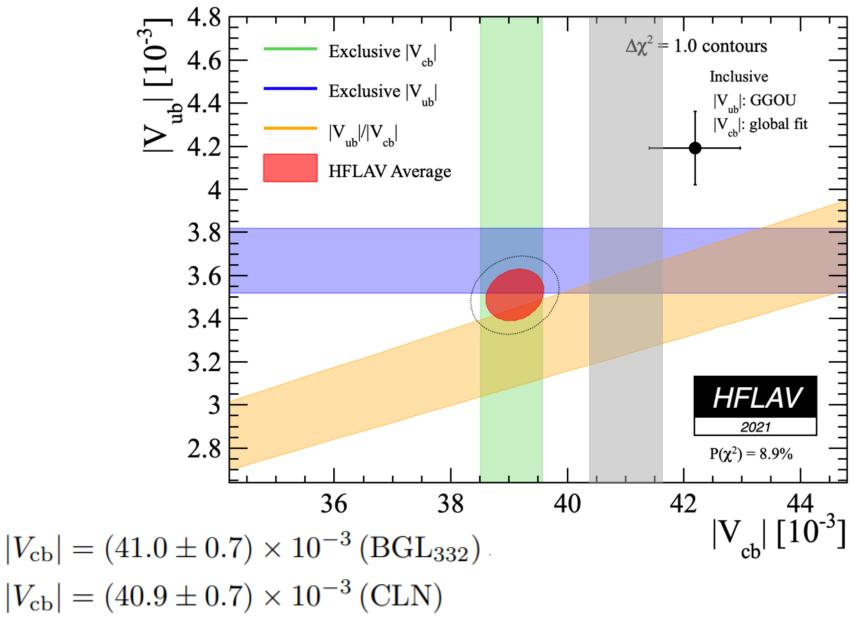

Angular coefficients in $B \rightarrow D^* lv$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
 - overall proportionality to $|V_{cb}|^2$
 - w≥1 is the hadronic recoil parameter relates to mom. transfer to the leptonic system

Angular coefficients in $B \rightarrow D^* lv$ and V_{cb}


- Measure 4D-differential distribution in terms of decay angles and w
 - overall proportionality to $|V_{cb}|^2$
 - w≥1 is the hadronic recoil parameter relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time using full Belle 711 fb⁻¹ sample
 - hadronically tagged

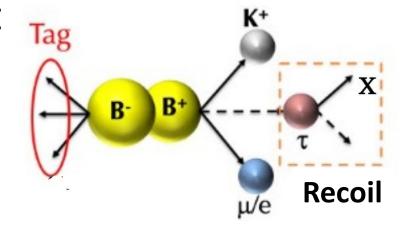


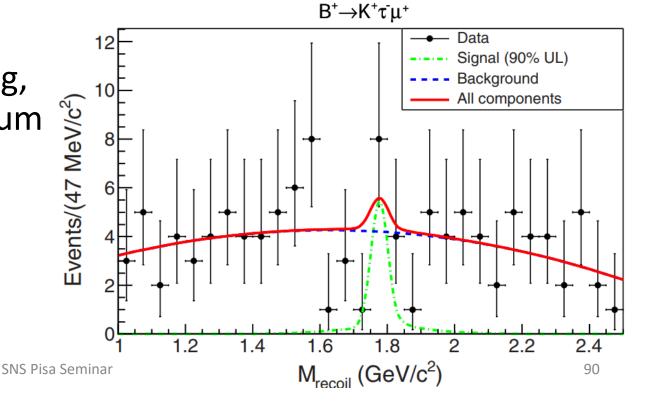

Belle paper in preparation

Angular coefficients in $B \rightarrow D^* lv$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
 - overall proportionality to $|V_{cb}|^2$
 - w≥1 is the hadronic recoil parameter relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time using full Belle 711 fb⁻¹ sample
 - hadronically tagged
- Fit performed to coefficients in different form-factor parameterizations and with LQCD inputs to extract V_{cb} as well as parameters of the form-factor model
 - WA BF also taken externally

Belle search for $B^+ o K^+ au^\pm l^+$


- Lower bounds on branching fractions in U(1) leptoquark models at $O(10^{-7})$
 - PRD 104, 055017 (2021)


G. Mohanty WG3

PRL 130, 261802 (2023)

Belle search for $B^+ \to K^+ \tau^{\pm} l^{\mp}$

- Lower bounds on branching fractions in U(1) leptoquark models at $O(10^{-7})$
 - PRD 104, 055017 (2021)
- Belle 711 fb⁻¹ data sample
- Hadronic tagging then use tag, kaon and lepton four momentum to workout recoil mass

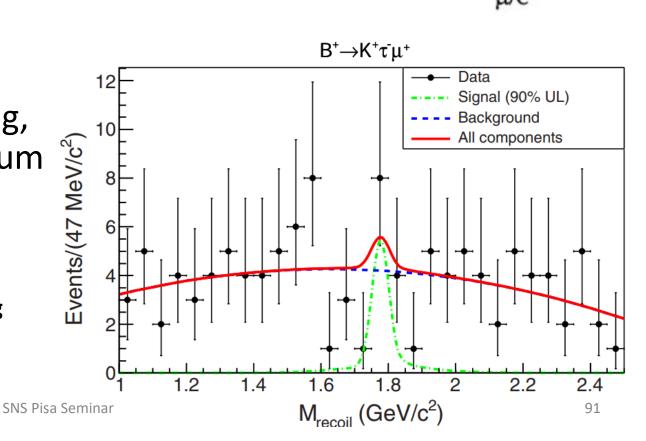
G. Mohanty WG3

PRL 130, 261802 (2023)

Recoil

Belle search for $B^+ o K^+ au^\pm l^\mp$

- Lower bounds on branching fractions in U(1) leptoquark models at $O(10^{-7})$
 - PRD 104, 055017 (2021)
- Belle 711 fb⁻¹ data sample
- Hadronic tagging then use tag, kaon and lepton four momentum to workout recoil mass


$$\mathcal{B}(B^{+} \to K^{+}\tau^{+}\mu^{-}) < 0.59 \times 10^{-5}$$

$$\mathcal{B}(B^{+} \to K^{+}\tau^{+}e^{-}) < 1.51 \times 10^{-5}$$

$$\mathcal{B}(B^{+} \to K^{+}\tau^{-}\mu^{+}) < 2.45 \times 10^{-5}$$

$$\mathcal{B}(B^{+} \to K^{+}\tau^{-}e^{+}) < 1.53 \times 10^{-5}$$

World leading

2023 results

25. Search for $\tau \rightarrow \ell \Phi$ — arXiv: 2305.04759 (conf note)

26. Observation of $B \rightarrow D(*)KKs - world leading arXiv: 2305.01321 (conf note)$

```
1. Measurement of the Ds lifetime — world leading, arXiv: 2306.00365. Accepted
2. Y(nS) dipion transitions—unique, paper in preparation
3. Search for ee \rightarrow \omega \eta_b at 10.75 GeV — unique, paper in preparation
4. CPV in B^0 \rightarrow \eta' K_S— unique, paper in preparation
5. CPV in B^o \to K_S \pi^o V— unique and world leading, paper in preparation
6. Improved B flavor tagging and sin2phi—paper in preparation
7. R(D*) — high profile — paper in preparation
8. R(X) — high profile, unique — paper in preparation
9. Evidence for B^+ \to K^+ \nu \overline{\nu} — high profile, unique — paper in preparation
10. BF and asymmetries in B \rightarrow \rho \gamma — unique, Belle +Belle II — paper in preparation
11. Search for Z' \rightarrow \mu\mu — paper in preparation
12. Energy-dependence of B(*)B(*) bar cross section — unique — paper in preparation
13. Test of light-lepton universality in B \to D^*\ell \nu decays — unique — arXiv: 2308.02023. Accepted.
14. Determination of the CKM angle y from a combination of Belle and Belle II results—paper in preparation
15. Measurement of CKM angle γ using GLW — Belle + Belle II, arXiv: 2308.05048
16. Measurement of CKM angle γ using GLS — Belle + Belle I, JHEP 09 (2023) 146
17. Search for long-lived spin-0 mediator in b → s transitions— world leading, arXiv: 2306.02830
18. Measurement of the τ mass — world leading, PRD 108, 032006 (2023)
19. BF and ACP in B^0 \rightarrow h^+h^{0-} decays and isospin sum rule — world leading — paper in preparation
20. ACP in B^0 \rightarrow K^0_S K^0_S K^0_S — paper in preparation
21. |Vcb| using untagged B \to D^*\ell \nu decays — competitive — paper in preparation
22. CPV in B^0 \rightarrow K^0\pi^0 decays — competitive, PRL 131, 111803 (2023)
23. CPV in B^0 \rightarrow \Phi K^0_S – arXiv: 2307.02802. Accepted
24. Novel method for charm flavor tagging — unique, PRD 107, 112010 (2023)
```

From Diego Tonelli