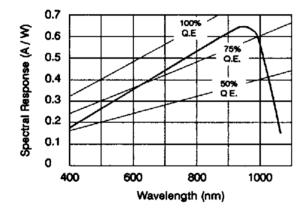


Istituto Nazionale di Fisica Nucleare SEZIONE DI FIRENZE

1

BeER (Beam-monitor with Extreme Range): a high dynamic range charge tagger for ion beams.

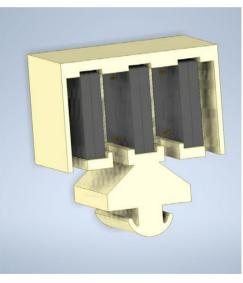
Lorenzo Pacini, INFN-Firenze, 2024/01/29.


Conception of the first prototype.

- The first prototype was designed to monitor the ion beam at SPS for a beam test of the HERD experiment:
 - a quick check of the beam composition was needed,
 - a event-by-event independent charge measurement was also convenient,
- > So, the detector has been designed with the following features:
 - simple and easy to mount (dismount) due to HERD mechanical restriction,
 - > quick on-line analysis results,
 - > thin in order to avoid large number of fragmented nuclei in the detector,
 - > high dynamic range to measure charge from 1 to ~80 (Pb).
- First prototype tested in 2022, slightly different versions tested in 2023.

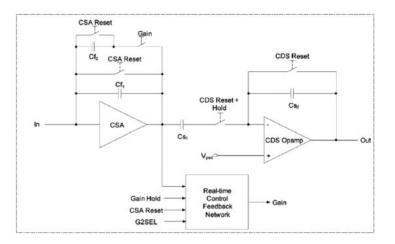
Design of the first prototype: sensors.

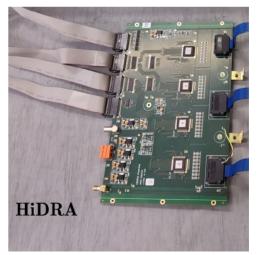
- > 6 blind PDs: VTH2090, active area 9.2x9.2 mm2. This sensor were employed for the CaloCube project ("O. Adriani et al 2019 JINST 14 P11004").
- Simple "home-made" plastic mechanical structure.



ELECTRO-OPTICAL CHARACTERISTICS @ 25° C

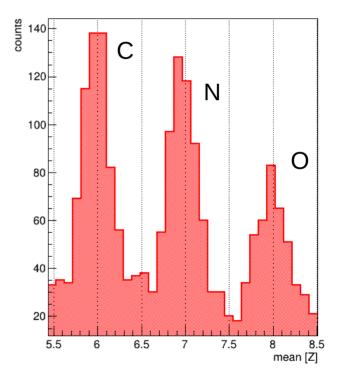
		PEAK	RADIANT SENSITIVITY SR				SHORT CIRCUIT		DARK CURRENT ID		JUNCTION	RISE	NEP	D*
PART NUMBER	SPECTRAL RESPONSE JP.TYP.	TYP (A/W)				CURRENT I _{SH} 100 LUX (µA)		V _R = 30 V (nA)	TEMP. Coeff.	CAPACITANCE C., TYP.	TIME & Typ	V _R = 30 V TYP.	V _R = 30 V TYP	
			480	540	633	940		<u> </u>		TC, TYP.	V _R = 30 V		_	(cm √Hz)
		(nm))	nm	nm	nm	nm	MIN.	TYP.	MAX.	(%/℃)	(pF)	(ns)	(₩/√Hz)	(w)
VTH2	090	960	.25	.30	.40	.60	65	80	10	15	70	15	4 X 10 ⁻¹⁴	2.6 X 10 ¹³
VTH2	091	960	.25	.30	.40	.60	65	80	5	15	70	15	4 X 10 ⁻¹⁴	2.6 X 10 ¹³


3D model



Design of the first prototype: electronics.

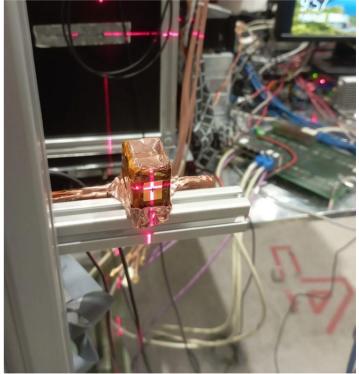
- Diodes are read-out with custom chip HiDRA, designed by INFN-Trieste (Italy), version 2.
- Double gain CSA with automatic-gain selection circuitry.
- High dynamic range (~ 5*10⁵)
- Low power consumption ~ 3.5 mW/chan.
- Low noise: ENC ~2500e
- > 16 input channels.
- Self-trigger system.
- > FFE board includes 4 HiDRA2 chip
- See: "O. Adriani et al 2022 JINST 17 P09002"



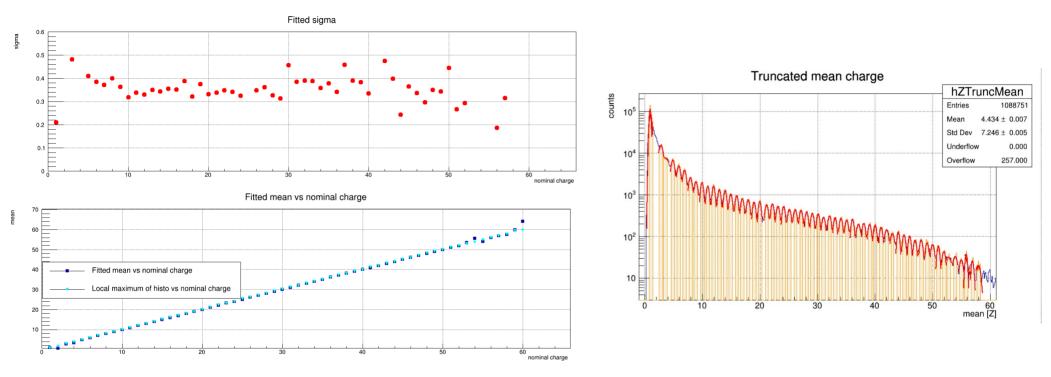
Data analysis strategy

- For each blind diodes:
 - Convert ADC -> MIP
 - Convert MIP -> Z
 - > Evaluate if ADC signal > noiseThreshold.
 - Evaluate the number of consistent PD with the one considered,
 - > applied only during 2023 test beam.
- Selection for plot:
 - > Number of diodes above noise Threshold > 3
 - Maximum number of consistent diodes = 6,
 - > applied only during 2023 test beam.

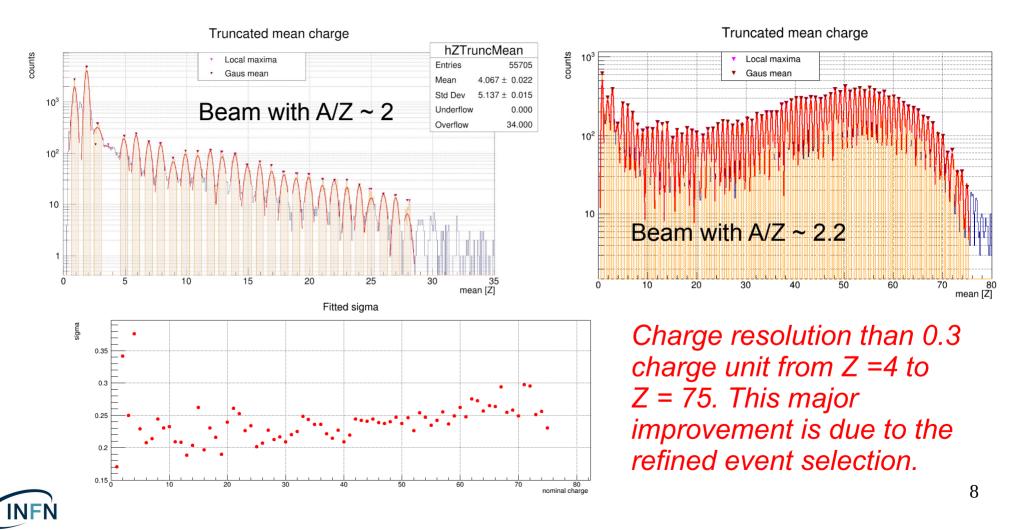
The peaks of C, N, O observed in 2023



Test history and data usage.


- BeER has been employed in different tests at SPS with ion beam:
 - 2022 HERD: nuclei tag used to check the non-linearity of the LYSO scintillator (HERD CALO active material).
 - 2023 HERD: nuclei tag used to check the performance of large scale prototype with nuclei.
 - 2023 AMS-02: first test outside the HERD collaboration. Data are employed for independent charge tag and charge reconstruction efficiency evaluation.
- On-line results has been always very useful as ion beam monitor.

Photograph of 2022 prototype


Performance of 2022 BeER.

The first version of the prototype have a charge resolution better than 0.5 up to Z = 60.

Performance of 2023 BeER.

Next steps.

- Hardware study for 2024, already financed by INFN:
 - Enlarge the active area of the detector by adding more PDs.
 - > Adjust the mechanics for the new design, add motorized sliders.
 - > Adjust the electronics to read-out more channels (by using HiDRA 2 chip).
 - > Test the new prototype at SPS (CERN) and/or BTF (Frascati)
- Future activities (which have not been financed yet):
 - Study different read-out electronics which is optimized for application to accelerators (e.g. faster response with respect to current version).
 - Study a custom Silicon sensor for this application (blind PD is a cheap solution but it is not the best one)
- Expanding the applications of the detector: high energy ions beam, high multiplicity low energy beams,

Backup: new sensors and electronics

New PD: VTH 2120

Low capacitance silicon photodiode chip designed for alpha particle detection. Assembly compatible with conductive epoxy mount.

Need a bonding procedure.

		Chip ID:	5 mm	10 mm	
Parameter	Symbol	Conditions			Unit
Breakdown voltage	VBR	100 uA	> 100	> 100	V
Junction capacitance	CJ	20 V	< 30	< 120	pF
Dark current		20V	< 2	< 5	nA
Dark current	ID	40 V	< 5	< 10	nA
Depletion layer thickness	t	20 V	> 0.09	> 0.09	mm
Dead layer	td	Si equivalent	< 150	< 150	nm

Nominal values at room temperature (22°C)

Electronics HiDRA vs SKRIC2a

- HiDRA 2:
 - S/N per MIP ~ 4 (measured).
 - Saturation level > Z ~ 100 !!! (measured up to Z = 80)
 - Self-trigger: threshold ~ 1 MIP (measured)
 - Low acq. rate: ~ 1kHz now, maximum rate is not easy.
 - > CSA with reset \rightarrow 10 % of events ar not properly acquired.
- SKIROC2a
 - S/N MIP ~ 8 (TBC)
 - Saturation level ~ 25 (TBC)
 - Self-trigger: threshold << MIP (measured)</p>
 - High acq rate (TBD, now it is very slow due to the LabView software!!)

SKIRC2a: BTF 2022 results

- * HG noise \sim 1.5 ADC (12 bit), LG noise < 1 ADC TBC with 16bit ADC
- * Noise SKIROC / HiDRA \sim 1.35
- High gain SKIROC / HIDRA ~ 4.2
- * Low gain SKIROC / HIDRA LG \sim 9
- Saturation level, pedestal subtracted \sim 1300 12bitADC (TBC with laboratory test)
 - HiDRA saturation, pedestal subtracted: \sim 35k 16bitADC \rightarrow 2200 12bitADC
 - SKIROC/HIDRA saturation (it is not corrected for different gain) ~ 0.6
- Saturation SKIROC/HIDRA, gain corrected ~ 0.065
- Dynamic range:
 - SKIROC: $1300*9.2/1.5 \sim 8k$ (data-sheet features 25k, is it affected by 12bit ADC?)
 - HiDRA: $35k*20/18 \sim 40k$ (data-sheet features: 125k (50pC/1fC))
 - SKIROC / HiDRA = 0.2

