

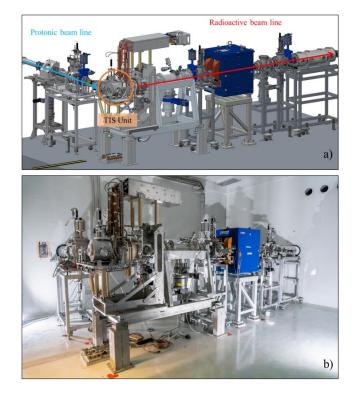
Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

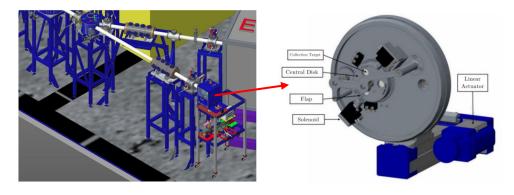
Laboratori Nazionali di Legnaro – INFN

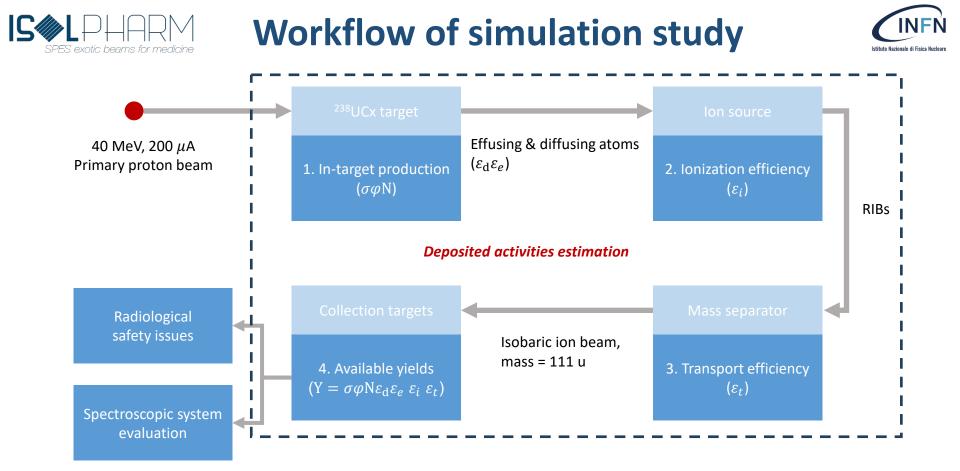
IRIS (Isolpharm Radionuclide Impantation Station) development and simulations update

Daiyuan Chen

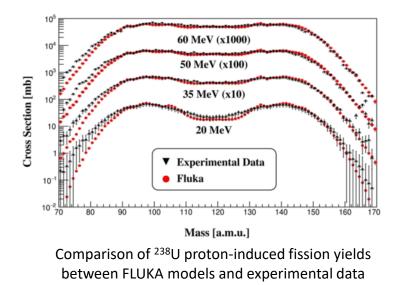
March 15th, 2024

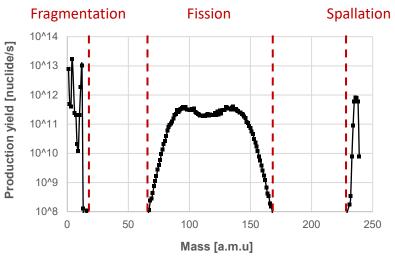

- I. Hardware development brief
- II. Workflow of simulation study


III. Conclusion


Hardware development brief

- Downstream of the SPES RIB line
- Handle the collection targets Coupling with the beamline & subsequent movement for chemical processes
- Spectroscopic characterization Online monitoring & EOB production measurement
- Being developed on the offline front-end in terms of electromechanical control and detection system




Workflow of simulation study

1. In-target production calculation

Centofante, L., et al. "Study of the radioactive contamination of the ion source complex in the Selective Production of Exotic Species (SPES) facility." *Review of Scientific Instruments* 92.5 (2021).

Mass yield spectrum due to the primary proton beam interactions in the ²³⁸UCx SPES target calculated with FLUKA 2023.3.3

Workflow of simulation study

z	Α	Isotope	Half-life	Half-life	Volatile at 2000 °C, 1e-5 mbar	In-target Production			Error	
				[s]		[nuclide/s/pr]	[nuclide/s/pr] merged	[nuclide/s]	%	
40	110	110Zr	37.5ms	0.0375	0	9.00E-09	9.00E-09	1.13E+07	30.49	
40	111	111Zr	24ms	0.024	0	2.00E-09	2.00E-09	2.50E+06	69.99	
41	110	110Nb	82ms	0.082	0	1.40E-07	1.40E-07	1.75E+08	8.896	
41	111	111Nb	54ms	0.054	0	4.20E-08	4.20E-08	5.25E+07	15.35	
41	112	112Nb	33ms	0.033	0	1.40E-08	1.40E-08	1.75E+07	28.93	
42	110	110Mo	0.296s	0.296	0	3.08E-06	3.08E-06	3.85E+09	1.789	
42	111	111Mo	186ms	0.186	0	7.55E-07	7.55E-07	9.44E+08	3.747	
42	112	112Mo	120ms	0.12	0	4.18E-07	4.18E-07	5.23E+08	4.518	
43	110	110Tc	0.9s	0.9	0	2.07E-05	2.07E-05	2.59E+10	0.7812	
43	111	111Tc	290ms	0.29	0	1.28E-05	1.28E-05	1.60E+10	0.6174	
43	112	112Tc	271ms	0.271	0	4.45E-06	4.45E-06	5.56E+09	1.418	
44	110	110Ru	12.04s	12.04	0	8.58E-05	8.58E-05	1.07E+11	0.3555	
44	111	111Ru	2.12s	2.12	0	4.50E-05	4.50E-05	5.63E+10	0.4589	
44	112	112Ru	1.75s	1.75	0	4.15E-05	4.15E-05	5.19E+10	0.4464	
45	110	110Rh	3.35s	3.35	0	4.39E-05	4.39E-05	5.49E+10	0.499	Filter 1 – Half-life
45	111	111Rh	11s	11	0	7.83E-05	7.83E-05	9.79E+10	0.289	
45	112	112Rh	3.6s	3.6	0	6.74E-05	6.74E-05	8.43E+10	0.4466	
46	110	110Pd	STABLE	0	х	6.96E-06	6.96E-06	8.70E+09	1.248	Filter 2 – Volatility
46	111	111Pd	23.4m	1404	х	1.31E-05	1.33E-05	1.66E+10	0.96	
46	112	112Pd	21.04h	75744	х	4.26E-05	4.26E-05	5.33E+10	0.4584	
47	110	110Ag	24.56s	24.56	х	5.10E-08	6.30E-08	7.88E+07	13.28	Chosen ones
47	111	111Ag	7.45d	643680	х	3.88E-07	6.92E-07	8.65E+08	6.362	
47	112	112Ag	3.13h	11268	х	2.32E-06	2.32E-06	2.90E+09	2.2	
48	111	111Cd	STABLE	0	х	2.00E-09	3.00E-09	3.75E+06	69.99	
48	112	112Cd	STABLE	0	х	3.20E-08	3.20E-08	4.00E+07	15.31	

Workflow of simulation study

2. Ionization efficiency estimation

Plasma ion source

Test number	Measured ionization efficiency	
#	%	
1	10.54	
2	8.91	
3	16.17	
4	11.88	
5	8.8	
6	4.18	
7	6.85	
8	15.63	7
9	14.83	15.03±0.53
10	14.62	
Average	11.24±4.07	

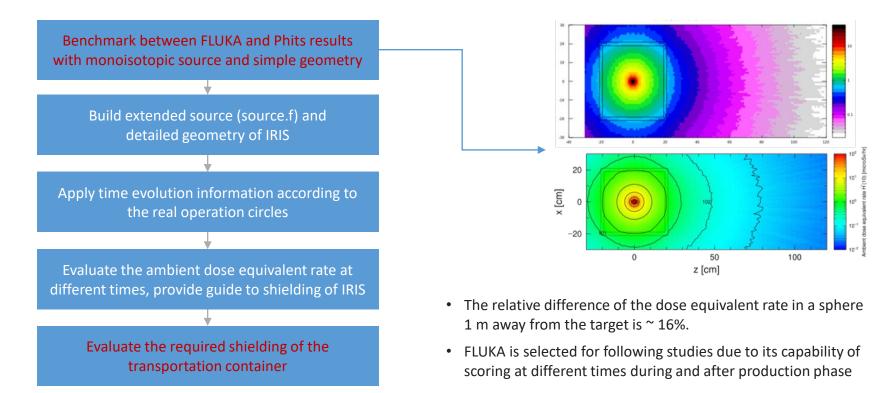
Laser ion source ≤14% RILIS@CERN

Ballan, Michele, et al. "Preliminary evaluation of the production of non-carrier added 111Ag as core of a therapeutic radiopharmaceutical in the framework of ISOLPHARM_Ag experiment." Applied Radiation and Isotopes 164 (2020): 109258.

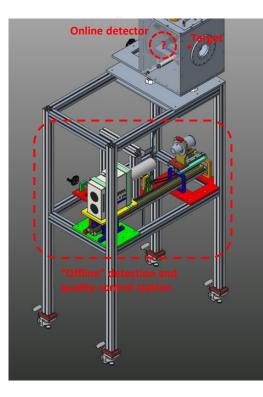
3. Transport efficiency estimation

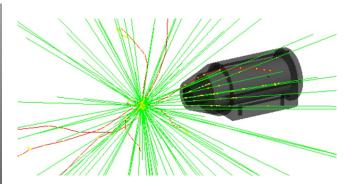
Calculation results of A = 150 u (safely compared to A = 111 u) :

- WF (Wien Filter) and LRMS (Low Resolution Mass Spectrometer) can individually remove 96.5% and 99.99% of isotopes with mass numbers close to 150.
- only **3.5E-4** % of isotopes with A close to 150 contaminate the target, which could be neglected even in the case of mass number = 111.


z	Α	Isotope	In-target production	Ionization efficiency	Transport efficiency	Available yield
			[nuclide/s/pr] merged	%	%	[A]
46	111	111Pd	1.66E+10	15	99.99965	3.99E-10
46	112	112Pd	5.33E+10	15	3.50E-04	4.47E-15
47	110	110Ag	7.88E+07	15	3.50E-04	6.62E-18
47	111	111Ag	8.65E+08	15	99.99965	2.08E-11
47	112	112Ag	2.90E+09	15	3.50E-04	2.44E-16

Available yield of mass number = 111 0.42 nA





Spectroscopic system evaluation

- Online (LBC) and Offline (LBC + HPGe) detection systems are studied in separate projects
- The detector response and the detection efficiency is studied with Geant4 on simulation side
- CADMesh is used to import detector and IRIS mechanical elements models into geometry
- StandardElectroMagnetic and G4RadioactiveDecay lists would be applied
- Simulation results will provide the guide to detectors placement and be used as benchmark with experimental results

- A work flow is being developed for the case of estimating deposited activities of radionuclides of interest on collection targets installed in IRIS, different application scenarios may require different criteria.
- Starting from the estimated results, a few simulation studies can be performed to benefit the hardware development mutually, and used for benchmark in future tests.
- Considering the first-stage experiments arrangement of ISOLPHARM, Other targets (SiC, TiC, etc.) along with products of medical interest will be studied. The UCx target is chosen as the study case for its complexity in production.
- Preliminary results are supposed to be presented on SATIF-16 meeting.
- At this stage, a few issues are still to be discussed:
 - Lack of ionization efficiency data of some radionuclides of interest can be encountered;
 - Operation cycle and the sequence of collection targets handling need to be decided for simulation studies.