

Cliffhanger EMRIs

local two-body relaxation and post-Newtonian dynamics

Davide Mancieri

Co-authors: Luca Broggi, Matteo Bonetti, Alberto Sesana

EMRIs and two-body relaxation

 In nuclear stellar clusters, compact objects can be scattered onto tight and eccentric orbits around the central massive black hole (MBH) via two-body interactions

EMRIs and two-body relaxation

t_{GW} time needed for **GWs** to significantly change the orbital elements

t_{rlx} time needed for **two-body relaxation** to significantly change the orbital elements

DM+ 2024, submitted

EMRIs and two-body relaxation

t_{GW} time needed for **GWs** to significantly change the orbital elements

t_{rlx} time needed for **two-body relaxation** to significantly change the orbital elements

Direct plunges (DPs)

Davide Mancieri

EMRI-to-plunge ratio

DM+ 2024, submitted

Cliffhanger EMRIs

25/10/24 GraSP24 Davide Mancieri

25/10/24 GraSP24 Davide Mancieri

Orbit-averaged approximation

- Two-body relaxation is treated via diffusion coefficients D[X], which give the expected change of X per unit of time
- In the usual Monte Carlo or Fokker-Planck approaches, the effects of two-body relaxation are orbit-averaged

$$\langle D[\Delta E] \rangle_P = \frac{2}{P} \int_{r_{\text{apo}}}^{r_{\text{peri}}} D[\Delta E] \frac{dr}{v_r}$$
$$\langle D[\Delta J] \rangle_P = \frac{2}{P} \int_{r_{\text{apo}}}^{r_{\text{peri}}} D[\Delta J] \frac{dr}{v_r}$$

Local two-body relaxation

- We integrate the orbit of a stellar-mass BH around a non-spinning MBH with post-Newtonian dynamics up to the 2.5PN term
- At each time step, we kick the stellar-mass BH to mimic two-body interactions during the last Δt

Local two-body relaxation

- We integrate the orbit of a stellar-mass BH around a non-spinning MBH with post-Newtonian dynamics up to the 2.5PN term
- At each time step, we **kick** the stellar-mass BH to mimic two-body interactions during the last Δt

Loss cone definition in PN dynamics

Plunging orbits:

Loss cone definition in PN dynamics

Plunging orbits:

EMRI-to-plunge ratio

PN terms shift S(a) to the right

$$S(a_0) = \frac{N_{\text{EMRI}}(a_0)}{N_{\text{EMRI}}(a_0) + N_{\text{DP}}(a_0)}$$

Comparison with Qunbar & Stone 24

We could not exactly reproduce their result employing similar techniques

Qunbar and Stone 2024

- Two-body relaxation is orbit-averaged
- Newtonian dynamics
- Only stellar population around the MBH
- Stellar potential is ignored

This work

- Two-body relaxation is local
- 2.5PN dynamics
- Stars and stellar-mass BHs around the MBH
- Stellar and BHs potential accounted for

Local vs orbit-averaged

Empty loss cone regime

Once the velocity vector falls inside the loss cone, the object WILL reach the pericentre and fall into the MBH

Full loss cone regime

Two-body encounters can still happen inside the loss cone: the object can leave the loss cone before reaching the pericentre and avoid plunging

You cannot describe the full loss cone regime if you keep the shape of the orbit frozen for a full period!

EMRI and plunge rates

In reality:

- S(a) is smooth
- S(a) does not go to zero

Conclusions

- 1. Cliffhanger EMRIs break the classical EMRI-to-plunge ratio picture: EMRIs can form from initially wide orbits around MBHs smaller than 10⁶ M_{sun}
- 2. More EMRIs are formed by locally accounting for two-body relaxation and using PN dynamics
- 3. The orbit-averaged approximation fails in predicting the EMRI-to-plunge ratio in the full loss cone regime
- 4. Cliffhanger EMRIs can contribute to a large fraction of the total EMRI rate. The total rate is overestimated if S(a) is approximated to a step function

Thank you for the attention!