

UNIVERSITÄ SEIT 1386

Breaking black-hole uniqueness at supermassive scales

Pedro G. S. Fernandes

Gravity Shape Pisa 2024

2312.11430 with Astrid Eichhorn, Aaron Held and Hector Silva

25-10-2024

Black-hole uniqueness

- A central prediction of GR is that <u>all</u> vacuum black holes are described exactly by the Kerr metric
- Black holes all have the same spacetime structure, rescaled only by their mass
- The same theoretical model describes astrophysical objects ranging, at least, <u>10 orders of magnitude in mass</u>, from $M \sim M_{\odot}$ to $M \sim 10^{10} M_{\odot}$
- Any deviation from Kerr would signal <u>new physics</u>

Refer to Thomas' talk on motivations to look for new physics in gravity

Where can we potentially observe new physics?

- Cosmological scales
- <u>Strong-gravity regime</u>

New physics should manifest only in these regimes, and agree with GR in all other regimes where it is well-tested (up to experimental accuracy).

Finding an alternative model fulfilling these requirements is highly non-trivial!

Scalarization

Scalarization

- One way to excite new physics <u>exclusively</u> in certain regimes is through scalarization
- Scalarization occurs in gravitational theories obeying the following conditions: 1. There is (at least) one new scalar field
- - 2. The theory allows for (at least) two different branches of solutions:
 - (i) a scalar-free solution which coincides exactly with GR
 - (ii) a scalarized solution, different from those of GR, which is excited only in certain regimes

Damour et. al, 1993 Doneva et. al, 2017 Antoniou et. al. 2017 Silva et. al, 2017

. . .

Tachyonic Instabilities Prelude to scalarization

Tachyonic Instabilities Prelude to scalarization

Tachyonic Instabilities Prelude to scalarization

Scalarization

• New scalar, ϕ , that obeys the following Klein-Gordon "wave" equation $\Box \phi = \mu_{\text{eff}}^2 \phi$

- Suppose $\mu_{\rm eff}^2 \ll 0$ near a compact object. The scalar becomes a tachyon near the compact object, inducing an instability
- Then new physics can be excited near compact objects in certain regimes, even if in all others the scalar is dormant (GR + ϕ = 0)

where $\mu_{\text{eff}} \equiv \mu_{\text{eff}}(x)$ is a (potentially) spacetime dependent effective mass.

Scalarization An example

concept:

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g}$$

• The scalar field equation is

 $\Box \phi = (\mu^2 - \alpha \mathscr{G}) \phi \equiv \mu_{\text{eff}}^2 \phi$

The field equations allow GR vacuum solutions together with $\phi = 0$

Consider the following theory belonging to the Horndeski class as a proof-of- $\left(R - (\partial \phi)^2 - \mu^2 \phi^2 + \alpha \phi^2 \mathscr{G}\right)$ $\mathscr{G} = R^2 - 4R_{\alpha\beta}R^{\alpha\beta} + R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu}$ $[\alpha] = \text{length}^2$

Scalarization of black holes How does the scalar behave near a Schwarzschild black hole?

- The closer we are to the horizon ($r_H = 2M$), the larger the GB curvature $\mathcal{G} = \frac{48M^2}{r^6} > 0$
- The smaller the black hole, the larger the curvature

 $\mu_{eff}^2 = \mu^2 - \alpha \mathscr{G} < 0$ in its vicinity

 $\mathscr{G}(r_H) \propto 1/M^4$

• If the black hole is small enough (i.e., the curvature sufficiently large), we can have

• In these conditions there is a tachyonic instability around sufficiently small black holes

Scalarization of black holes

Scalarization occurs when

N

hole uniqueness is lost in this regime!

$$M \sim \sqrt{\alpha}$$

• A new branch of scalarized black holes branches of Schwarzschild. Black-

Scalarization of black holes Which black holes scalarize?

with masses $M \sim \sqrt{\alpha}$ scalarize)

• Can α be arbitrarily large? The answer is "no"

• The coupling constant α defines the scale of new physics (only black holes)

Scalarization of black holes Which black holes scalarize?

- Neutron stars are also highly compact objects, and therefore susceptible to scalarization
- However, binary pulsar data we have is in great agreement with GR • The scale of new physics can be at most $\sqrt{\alpha} \sim \mathcal{O}(km)$ [see e.g. Doneva et.
- al, 2112.03869]
- We can only potentially see new physics in solar-mass black holes $M_{\odot} \sim 1 \mathrm{km}$

Breaking black-hole uniqueness at supermassive scales

Supermassive scales

- Supermassive scales: black holes with $M \gtrsim 10^5 M_{\odot}$
- new physics
- SMBHs have very low horizon curvature
- theory must be of order of the gravitational radius of the SMBH
- be insensitive to new physics

• Common expectation: the higher the curvature, the more likely we are to see

Intuitively, to significantly impact SMBHs, new length scales/couplings of our

Experiments probing larger black holes such as LISA or the EHT would (likely)

Scalarizing supermassive black holes

- Is it really impossible to have new physics affect SMBHs, while the weak-field limit, neutron stars etc... all remain well-described by GR?
- For SMBHs to scalarize in some model, it must be that

- $\Box \phi = \mu_{\rm eff}^2 \phi$
- $\mu_{\text{eff}}^2 \sim \begin{cases} \text{significantly negative around supermassive black holes} \\ \text{positive or possibly negative but very small in other regimes} \end{cases}$

Scalarizing supermassive black holes We considered the following expression for the effective mass $\mu_{\text{eff}}^2 = -\alpha_1 \,\mathcal{G} + \,\alpha_2^3 \,\mathcal{G}^2$

- the effective mass
- possibly leading to scalarization

• When $\mathscr{G} \gg 1$, the second term dominates giving a positive contribution to

• When curvatures are intermediate, there is an interplay of the two terms,

• When $\mathscr{G} \ll 1$, so is the effective mass, and we do not expect instabilities

Scalarizing supermassive black holes Instability of the Schwarzschild black hole

coupling ratio α_2/α_1

Evading scalarization of other astrophysical objects Neutron stars

- We do not expect scalarization to occur in neutron stars if both couplings are taken to be in the supermassive scale (curvature is very high)
- Example: Effective potential of scalar perturbations for a neutron star with $M \approx 1.4 M_{\odot}$, $r_s \approx 11 {\rm km}$, and taking $\sqrt{\alpha_1} \sim 10^6 M_{\odot}$

$$\frac{d^2u}{dr_*^2} + \left(\omega^2 - V_{\text{eff}}\right)u = 0$$

)

Scalarizing supermassive black holes The model

So far we have only considered the scalar-field equation

 $\Box \phi = (-\alpha_1 \mathscr{G})$

What reasonable model could produce such an equation?

$$(1+\alpha_2^3 \mathscr{G}^2)\phi \equiv \mu_{\text{eff}}^2\phi$$

Scalarizing supermassive black holes The model

Consider the following theory

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[\frac{1}{16\pi} \int d^4x \sqrt{-g} \right]$$

By introducing an auxilliary scalar ψ

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - (\partial x) \right]$$

- The model belongs to a bi-scalar extension of Horndeski

 $\left[R - (\partial \phi)^2 + (\alpha_1 \mathcal{G} - \alpha_2^3 \mathcal{G}^2)\phi^2\right]$

 $(\partial \phi)^2 + \alpha_1 \phi^2 \mathcal{G} - 2\alpha_2^3 \left(\psi \mathcal{G} - \frac{\psi^2}{2} \right) \phi^2$

All equations of motion are second-order in all involved fields, $g_{\mu\nu}$, ϕ and ψ

Scalarizing supermassive black holes Scalarized black holes

 We have numerically solved the field equations in spherical symmetry to obtain scalarized black hole solutions

0.5

Cosmological stability of the theory

- during inflation
- that prevents inflation [Charmousis et. al, 1903.02399]
- In our case $\mu_{eff}^2 = -\alpha_1 \mathcal{G} + \alpha_2^3 \mathcal{G}^2$. The new term dominates during inflation and prevents any instability
- Compatible with all cosmological evolution described by GR

• In the standard scalarization scenario $\mu_{eff}^2 = -\alpha_1 \mathscr{G}$, which is highly negative

• Assuming the Universe starts in a GR vacuum, there is catastrophic instability

Conclusions

Conclusions

- We introduced a novel scalarization model where new physics manifests only for supermassive black holes
- Consistent cosmological evolution
- To constraint the theory and probe supermassive scales we need experiments targeting those scales
- Potential observational consequences for: EHT, LISA, pulsar-timing arrays...
- This theory serves as a proof-of-concept that supermassive black holes can significantly deviate from Kerr

Ongoing and Future Work Black-Hole Imaging

Ongoing and Future Work

- 0.20
- 0.15• Rotating black holes
 - ·~ 0.10
 - 0.05
 - 0.00

SMBH scalarization from an EFT point of view

