

UNIVERSITÄ SEIT 1386

Gravity Shape Pisa 2024

Breaking black-hole uniqueness at supermassive scales

Pedro G. S. Fernandes

25-10-2024

2312.11430 with Astrid Eichhorn, Aaron Held and Hector Silva

Black-hole uniqueness

- A central prediction of GR is that **all vacuum black holes are described exactly** by the Kerr metric
- Black holes all have the same spacetime structure, rescaled only by their mass
- The same theoretical model describes astrophysical objects ranging, at least, 10 orders of magnitude in mass, from $M \sim M_{\odot}$ to f $M \sim M_{\odot}$ to $M \sim 10^{10} M_{\odot}$
- Any deviation from Kerr would signal new physics

Refer to Thomas' talk on motivations to look for new physics in gravity

Where can we potentially observe new physics?

- Cosmological scales
- Strong-gravity regime

New physics should manifest only in these regimes, and agree with GR in all other regimes where it is well-tested (up to experimental accuracy).

Finding an alternative model fulfilling these requirements is highly non-trivial!

Scalarization

Scalarization

- One way to excite new physics exclusively in certain regimes is through **scalarization**
- Scalarization occurs in gravitational theories obeying the following conditions: 1. There is (at least) one new scalar field
- - 2. The theory allows for (at least) two different branches of solutions:
		- (i) a scalar-free solution which coincides exactly with GR
		- (ii) a scalarized solution, different from those of GR, which is excited only in certain regimes

Damour et. al, 1993 Doneva et. al, 2017 Antoniou et. al. 2017 Silva et. al, 2017

 \sim $-$

Tachyonic Instabilities Prelude to scalarization

Tachyonic Instabilities Prelude to scalarization

Tachyonic Instabilities Prelude to scalarization

Scalarization

• New scalar, ϕ , that obeys the following Klein-Gordon "wave" equation $\Box \phi = \mu_{\text{eff}}^2 \phi$

where $\mu_{\text{eff}} \equiv \mu_{\text{eff}}(x)$ is a (potentially) spacetime dependent effective mass.

- Suppose $\mu_{\text{eff}}^2 \ll 0$ near a compact object. The scalar becomes a tachyon near the compact object, inducing an instability $\frac{2}{\text{eff}} \ll 0$
- Then new physics can be excited near compact objects in certain regimes, even if in all others the scalar is dormant (GR + $\phi = 0$)

Scalarization An example

• Consider the following theory belonging to the Horndeski class as a proof-of- $\frac{1}{16\pi}$ $\int d^4x \sqrt{-g} \left(R - (\partial \phi)^2 - \mu^2 \phi^2 + \alpha \phi^2 \mathcal{G} \right)$ $\mathcal{G} = R^2 - 4R_{\alpha\beta}R^{\alpha\beta} + R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu}$ $[\alpha] = \text{length}^2$

concept:

• The scalar field equation is

 $\Box \phi = (\mu^2 - \alpha \mathcal{E}) \phi \equiv \mu_{\text{eff}}^2 \phi$

The field equations allow GR vacuum solutions together with $\phi = 0$

$$
S = \frac{1}{16\pi} \int d^4x \sqrt{-g}
$$

Scalarization of black holes How does the scalar behave near a Schwarzschild black hole?

• The closer we are to the horizon ($r_H = 2M$), the larger the GB curvature $g =$

• The smaller the black hole, the larger the curvature

 $\mu_{\text{eff}}^2 = \mu^2 - \alpha \mathscr{G} < 0$ in its vicinity

 $\mathcal{G}(r_H) \propto 1/M^4$

• If the black hole is small enough (i.e., the curvature sufficiently large), we can have

• In these conditions there is a tachyonic instability around sufficiently small black holes

48*M*²

Scalarization of black holes

• Scalarization occurs when

• A new branch of *scalarized* black holes branches of Schwarzschild. Black-

hole uniqueness is lost in this regime!

$$
M\thicksim \sqrt{\alpha}
$$

Scalarization of black holes Which black holes scalarize?

with masses $M \sim \surd \alpha$ scalarize)

• Can α be arbitrarily large? The answer is "no"

• The coupling constant α defines the scale of new physics (only black holes

Scalarization of black holes Which black holes scalarize?

- Neutron stars are also highly compact objects, and therefore susceptible to scalarization
- However, binary pulsar data we have is in great agreement with GR
- The scale of new physics can be at most $\sqrt{\alpha} \sim \mathcal{O}(\mathrm{km})$ [see e.g. Doneva et. al, 2112.03869]
- We can only potentially see new physics in solar-mass black holes *M*[⊙] ∼ 1km

Breaking black-hole uniqueness at supermassive scales

Supermassive scales

• Common expectation: the higher the curvature, the more likely we are to see

- Supermassive scales: black holes with $M \gtrsim 10^5$
- new physics
- SMBHs have very low horizon curvature
- theory must be of order of the gravitational radius of the SMBH
- be insensitive to new physics

$M^{}_{\odot}$

• Intuitively, to significantly impact SMBHs, new length scales/couplings of our

• Experiments probing larger black holes such as LISA or the EHT would (likely)

Scalarizing supermassive black holes

- Is it really impossible to have new physics affect SMBHs, while the weak-field limit, neutron stars etc… all remain well-described by GR?
- For SMBHs to scalarize in some model, it must be that

 $\mu_{\rm eff}^2 \sim \bigg\{$

- $\Box \phi = \mu_{\text{eff}}^2 \phi$
- significantly negative around supermassive black holes positive or possibly negative but very small in other regimes

Scalarizing supermassive black holes • We considered the following expression for the effective mass $\mu_{\text{eff}}^2 = -\alpha_1 \mathcal{G} + \alpha_2^3$ 2

• When curvatures are intermediate, there is an interplay of the two terms,

• When $\mathscr{G} \ll 1$, so is the effective mass, and we do not expect instabilities

-
- the effective mass
- possibly leading to scalarization
-

• When $\mathscr{G} \gg 1$, the second term dominates giving a positive contribution to

Scalarizing supermassive black holes Instability of the Schwarzschild black hole

coupling ratio α_2/α_1

Evading scalarization of other astrophysical objects Neutron stars

- We do not expect scalarization to occur in neutron stars if both couplings are taken to be in the supermassive scale (curvature is very high)
- Example: Effective potential of scalar perturbations for a neutron star with $M \approx 1.4 M_{\odot}$, , and taking $r_{_S} \approx 11 \text{km}$, and taking $\sqrt{\alpha_1} \sim 10^6 \text{M}_\odot$

$$
\frac{d^2u}{dr_*^2} + \left(\omega^2 - V_{\text{eff}}\right)u = 0
$$

Scalarizing supermassive black holes The model

So far we have only considered the scalar-field equation

 $\square \phi = (-\alpha_1 \mathcal{G})$

What reasonable model could produce such an equation?

$$
\ddot{a} + \alpha_2^3 \mathcal{G}^2 \dot{\phi} \equiv \mu_{\text{eff}}^2 \phi
$$

Scalarizing supermassive black holes The model

• Consider the following theory

• By introducing an auxilliary scalar *ψ*

-
- The model belongs to a bi-scalar extension of Horndeski

 $\left[2\right]\phi^{2}\right]$

 $\frac{2}{2}$ $\left(\psi \mathcal{G} - \frac{\psi^2}{2}\right) \phi^2$

• All equations of motion are second-order in all involved fields, $g_{\mu\nu}^{},\,\phi$ and ψ

$$
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - (\partial \phi)^2 + (\alpha_1 \mathcal{G} - \alpha_2^3) \right]
$$

$$
S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - (\partial \phi)^2 + \alpha_1 \phi^2 \mathcal{G} - 2\alpha_2^3 \right]
$$

Scalarizing supermassive black holes Scalarized black holes

• We have numerically solved the field equations in spherical symmetry to obtain scalarized black hole solutions

0.5

Cosmological stability of the theory

• Assuming the Universe starts in a GR vacuum, there is catastrophic instability

- during inflation
- that prevents inflation [Charmousis et. al, 1903.02399]
- In our case $\mu_{\text{eff}}^2 = -\alpha_1 \mathcal{G} + \alpha_2^3 \mathcal{G}^2$. The new term dominates during inflation and prevents any instability 2
- Compatible with all cosmological evolution described by GR

• In the standard scalarization scenario $\mu_{\text{eff}}^2 = - \alpha_1 \mathscr{G}$, which is highly negative $\frac{2}{\text{eff}} = -\alpha_1$

Conclusions

Conclusions

- We introduced a novel scalarization model where new physics manifests only for supermassive black holes
- Consistent cosmological evolution
- To constraint the theory and probe supermassive scales we need experiments targeting those scales
- Potential observational consequences for: EHT, LISA, pulsar-timing arrays…
- This theory serves as a proof-of-concept that supermassive black holes can significantly deviate from Kerr

Ongoing and Future Work Black-Hole Imaging

Ongoing and Future Work

- 0.20
- 0.15 • Rotating black holes
	- \therefore 0.10
		- 0.05
		- 0.00

• SMBH scalarization from an EFT point of view

