GraSP2024-Pisa

October 23rd, 2024

Forecasting detection & parameter estimation capabilities for the Einstein Telescope

Ulyana Dupletsa on behalf of the ET Collaboration

**Large fraction of slides adapted from Marica Branchesi

Masses in the Stellar Graveyard

[Abbott et al. 2016, 2019, 2021, 2023] LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Masses in the Stellar Graveyard

GraSP24, Oct. 23-26 2024, Pisa

From current detectors to next-generation

[Hild et al. 2008]

Detection horizon for black-hole binaries

Next-generation ground-based GW detectors

[Hild et al. 2008, Punturo et al. 2010, Maggiore et al. 2020, Branchesi et al. 2023]

[Reitze et al. 2019, Evans et al. 2010]

GraSP24, Oct. 23-26 2024, Pisa

LIGO Livingston (GW150914) $\approx 10^{-19}$ LIGO Hanford (GW150914) ASD [Hz] Number of detections \rightarrow 10-21 Detection with very \rightarrow high SNR 10^{-23} 10^{0} 10^{1}

Nuclear

Physics

Astrophysics

Fundamental

Physics

 10^{-17}

ET-D

 10^{2}

f [Hz]

 10^{3}

Cosmology

 10^{4}

2011 First ET Conceptual Design Report

ournal of Cosmology and Astroparticle Physics

Science with the Einstein Telescope: a comparison of different designs

Marica Branchesi,^{1,2,*} Michele Maggiore,^{3,4,*} David Alonso,⁵ Charles Badger,⁶ Biswajit Banerjee,^{1,2} Freija Beirnaert,⁷ Enis Belgacem,^{3,4} Swetha Bhagwat,^{8,9} Guillaume Boileau,^{10,11} Ssohrab Borhanian,¹² Daniel David Brown,¹³ Man Leong Chan,¹⁴ Giulia Cusin, 15,3,4 Stefan L. Danilishin, 16,17 Jerome Degallaix, 18 Valerio De Luca,¹⁹ Arnab Dhani,²⁰ Tim Dietrich,^{21,22} Ulyana Dupletsa,^{1,2} Stefano Foffa,^{3,4} Gabriele Franciolini,⁸ Andreas Freise,^{23,16} Gianluca Gemme,²⁴ Boris Goncharov,^{1,2} Archisman Ghosh,⁷ Francesca Gulminelli,²⁵ Ish Gupta,²⁰ Pawan Kumar Gupta,^{16,26} Jan Harms,^{1,2} Nandini Hazra,^{1,2,27} Stefan Hild,^{16,17} Tanja Hinderer,²⁸ lk Siong Heng,²⁹ Francesco Iacovelli,^{3,4} Justin Janquart,^{16,26} Kamiel Janssens,^{10,11} Alexander C. Jenkins,³⁰ Chinmay Kalaghatgi,^{16,26,31} Xhesika Koroveshi,^{32,33} Tjonnie G.F. Li,^{34,35} Yufeng Li,³⁶ Eleonora Loffredo, ^{1,2} Elisa Maggio, ²² Michele Mancarella, ^{3,4,37,38} Michela Mapelli,^{39,40,41} Katarina Martinovic,⁶ Andrea Maselli,^{1,2} Patrick Meyers, 42 Andrew L. Miller, 43,16,26 Chiranjib Mondal, 25 Niccolò Muttoni,^{3,4} Harsh Narola,^{16,26} Micaela Oertel,⁴⁴ Gor Oganesvan,^{1,2} Costantino Pacilio,^{8,37,38} Cristiano Palomba,⁴⁵ Paolo Pani,⁸ Antonio Pasqualetti,⁴⁶ Albino Perego,^{47,48} Carole Périgois, 39,40,41 Mauro Pieroni, 49,50 Ornella Juliana Piccinni,⁵¹ Anna Puecher,^{16,26} Paola Puppo,⁴⁵ Angelo Ricciardone, 52,39,40 Antonio Riotto, 3,4 Samuele Ronchini, 1,2 Mairi Sakellariadou,⁶ Anuradha Samajdar,²¹ Filippo Santoliquido, 39,40,41 B.S. Sathyaprakash, 20,53,54 Jessica Steinlechner,^{16,17} Sebastian Steinlechner,^{16,17} Andrei Utina,^{16,17} Chris Van Den Broeck^{16,26} and Teng Zhang^{9,17}

2023 Science with the Einstein Telescope

GraSP24, Oct. 23-26 2024, Pisa

Ulyana Dupletsa

CAP

N

N

w

5

00

Reference Design of ET

The reference ET configuration consists of:

- Triangular shape
- 10 km arms
- 3 nested detectors in xylophone configuration: HF
 + HFLF (cryogenic)

Different Configurations

• Changes in geometry: triangle vs 2L, different arm lengths

- Triangle, 10 km arms (reference design)
- 2L, 15 km arms, at 45[°]

- Triangle, 15 km arms
- 2L, 20 km arms, at 45°

SARDINIA

Sos Enattos site

MEUSE-RHINE

Three-border region across Belgium, Germany and the Netherlands

GraSP24, Oct. 23-26 2024, Pisa

Role of the low frequency instrument:

What happens if we have only the HF part?

GraSP24, Oct. 23-26 2024, Pisa

From current detectors to next-generation

GraSP24, Oct. 23-26 2024, Pisa

Increased detection rate for 3G detectors Full Bayesian PE software is too expensive

GraSP24, Oct. 23-26 2024, Pisa

O,

Increased detection rate for 3G detectors

Full Bayesian PE software is too expensive

GraSP24, Oct. 23-26 2024, Pisa

O,

Increased detection rate for 3G detectors

Full Bayesian PE software is too expensive

Fisher matrix approximation

GraSP24, Oct. 23-26 2024, Pisa

$$\mathcal{L}(d|\vec{\theta}) \propto \exp\left[-\frac{1}{2}\langle d - h(\vec{\theta})|d - h(\vec{\theta})\rangle\right]$$

$$h(\vec{\theta}) = h_0 + \Delta\theta^i h_i \qquad \text{Linear signal approximation}$$

$$\mathcal{L}(d|\vec{\theta}) = \exp\left[-\frac{1}{2}\Delta\theta^i \langle h_i|h_j \rangle \Delta\theta^j\right]$$

$$\frac{1}{2} \frac{\Delta\theta^i \langle h_i|h_j \rangle \Delta\theta^j}{\frac{1}{2} \frac{1}{2} \frac{\Delta\theta^i \langle h_i|h_j \rangle \Delta\theta^j}{\Delta\theta^i = \theta^i - \theta^i_{\text{inj}}}}$$
Fisher matrix approximation

$$\mathcal{L}(d|\vec{\theta}) \propto \exp\left[-\frac{1}{2}\langle d - h(\vec{\theta})|d - h(\vec{\theta})\rangle\right]$$

$$h(\vec{\theta}) = h_0 + \Delta\theta^i h_i$$

$$Linear signal approximation$$

$$\mathcal{L}(d|\vec{\theta}) = \exp\left[-\frac{1}{2}\Delta\theta^i \langle h_i|h_j \rangle \Delta\theta^j\right]$$

$$Likelihood$$

$$Likelihood$$

$$\Delta\theta^i = \theta^i - \theta_{inj}^i$$

$$Likelihood$$

$$Likelihood$$

$$\Delta\theta^i = \theta^i - \theta_{inj}^i$$

$$Likelihood$$

Cross-checked inside the OSB9 division of ET!

ournal of Cosmology and Astroparticle Physics

Science with the Einstein Telescope: a comparison of different designs

Marica Branchesi, ^{2,*} Michele Maggiore, ^{3,4,*} David Alonso, ⁵ Charles Badger, Biswajit Banerjee, ² Freija Beirnaert,⁷ Enis Belgacem.^{3,4} Swetna Dnagwat.^{3,9} Guillaume Boileau.^{10,11} Ssohrab Borhanian,¹² Daniel David Brown,¹³ Man Leong Chan,¹⁴ Giulia Cusin, 15,3,4 Stefan L. Danilishin, 16,17 Jerome Degallaix, 18 Valerio De Luca¹⁹ Arnab Dhani,²⁰ Tim Dietrich,^{21,22} Ulyana Dupletsa, ² Stefano Foffa,^{3,4} Gabriele Franciolini.⁸ Angreas Freise, ²⁶ Gianluca Gemme,² Boris Goncharov, Archisman Ghosh,⁷ Francesca Gulminelle --- Isn Gunta --Pawan Kumar Gupta,^{16,2} Jan Harms,¹² Nandini Hazra^{1,2,27} Stefan Hild,^{16,17} Tanja Hinderer, K Siong Heng, Francesco Iacovelli,^{3,4} Justin Janquart,^{16,26} Kamiel Janssens,^{10,11} Alexander C. Jenkins,³⁰ Chinmay Kalaghatgi,^{16,26,31} Xhesika Koroveshi, 32,33 Tjonnie G.F. Li, 34,35 Yufeng Li, 36 Eleonora Loffredo^{1,2} Elisa Maggio,²² Michele Mancarella ^{3,4,37,38} Michela Mapelli,^{39,40,41} Katarina Martinovic, Andrea Maselli,² Patrick Meyers, 42 Andrew L. Miller, 43,16,26 Chiranjib Mondal, 43 Niccolò Muttoni 3,4 Harsh Narola, 16,26 Micaela Oertel, 44 Gor Oganesyan,¹² Costantino Pacilio,^{8,37,38} Cristiano Palomba,⁴⁵ Paolo Pani,^o Antonio Pasqualetti,⁴⁶ Albino Perego,^{47,48} Carole Périgois.^{39,40,41} Mauro Pieroni.^{49,50} Ornella Juliana Piccinni,⁵¹ Anna Puecher,^{16,26} Paola Puppo ⁴⁵ Angelo Ricciardone, 52,39,40 Antonio Riotto, 3 Samuele Ronchini, Mairi Sakellariadou ⁶ Anuradha Samajdar,²¹ Filippo Santoliquido, 9,40,41 B.S. Sathyaprakash, 20,53,54 Jessica Steinlechner,^{16,17} Sebastian Steinlechner,^{16,17} Andrei Utina,^{16,17} Chris Van Den Broeck^{16,26} and Teng Zhang^{9,17}

Science Reference Paper for the **CoBA study**

Work coordinated by Marica Branchesi and Michele Maggiore

(arXiv:2303.15923)

JCAP 07 (2023) 068

GraSP24, Oct. 23-26 2024, Pisa

Ulyana Dupletsa

G

S

S

JCAP07

N

N

ω

C

5

00

Table of contents

· 01 ·

Detector geometries and sensitivity curves $\cdot 02 \cdot$

Coalescence of compact binaries

· 03 ·

Multi-messenger astrophysics

· 04 ·

Stochastic backgrounds · 05 ·

Impacts of detector designs on specific science case · 06 ·

The role of the null stream in the triangle-2L comparison

Table of contents

· 01 ·

Detector geometries and sensitivity curves · 02 ·

Coalescence of compact binaries

• 03 • Multi-messenger astrophysics

· 04 ·

Stochastic backgrounds · 05 ·

Impacts of detector designs on specific science case · 06 ·

The role of the null stream in the triangle-2L comparison

GraSP24, Oct. 23-26 2024, Pisa

~ **720 000** 1 year of BNS events

~ **720 000** 1 year of BNS events

KNe Low redshift (~0.3=0.4)

GRBs High redshift

Ability to localize the source

Ability to localize the source

Achievable redshift

Ability to localize the source Achievable redshift

Pre-merger detection

Ability to localize the source Achievable redshift

Pre-merger detection

Full (HFLF cryo) sensitivity detectors											
$\Delta \Omega_{90\%}$ [deg ²]	A	All orienta	tion BNS	S		BNSs with $\boldsymbol{\Theta}_{v} < 15^{\circ}$					
	Δ10	Δ15	2L 15	2L 20	Δ10	Δ15	2L 15	2L 20			
10	11	27	24	45	0	1	2	5			
40	78	215	162	350	8	22	20	33			
100	280	764	644	1282	26	74	68	133			
10000	2112	5441	7478	13482	272	632	1045	1725			

Full (HFLF cryo) sensitivity detectors											
$\Delta \Omega_{90\%}$ [deg ²]	A	All orienta	ation BNS	S	BNSs with $\boldsymbol{\Theta}_{\mathrm{v}}$ < 15°						
	Δ10	Δ15	2L 15	2L 20	Δ10 Δ15 2L 15 2						
10	11	27	24	45	0	1	2	5			
40	78	215	162	350	8 22 20						
100	280	764	644	1282	26 74 68						
10000	2112	5441	7478	13482	272	632	1045	1725			

2L of 15 km misaligned is comparable to the **15 km triangle** and better than 10 km triangle

Full (HFLF cryo) sensitivity detectors											
$\Delta \Omega_{90\%}$ [deg ²]	All orientation BNSs BNSs with $\Theta_v < 15^\circ$										
	Δ10	Δ15	2L 15	2L 20	Δ10	Δ15	2L 15	2L 20			
10	11	27	24	45	0	1	2	5			
40	78	215	162	350	8	22	20	33			
100	280	764	644	1282	26	74	68	133			
10000	2112	5441	7478	13482	272	632	1045	1725			

	HF sensitivity detectors											
$\Delta \Omega_{90\%}$ [deg ²]	A	All orientation BNSs BNSs with $\Theta_v < 15^\circ$										
	Δ10	Δ15	2L 15	2L 20	Δ10	Δ15	2L 15	2L 20				
10	0	1	5	5	0	0	2	2				
40	4	10	20	47	0	5	6	17				
100	14	53	76	144	7	33	35	64				
10000	145	548	1662	3378	80	336	672	1302				

Significantly smaller number of well-localized events

$\Delta \Omega_{90\%}$ [deg ²]	A	All orienta	ation BNS	S	$DNOS WILLING_V \le 13$			
	Δ10	Δ15	2L 15	2L 20	Δ10	Δ15	2L 15	2L 20
10	11	27	24	45	0	1	2	5
40	78	215	162	350	8	22	20	33
100	280	764	644	1282	26	74	68	133
10000	2112	5441	7478	13482	272	632	1045	1725

Full (HFLF cryo) sen

HF sensitivity detectors									
$\Delta \mathbf{\Omega}_{90\%}$ [deg ²]	A	All orienta	tion BNS	S	BNSs with $\Theta_v < 15^\circ$				
	Δ10	Δ15	2L 15	2L 20	Δ10	Δ15	2L 15	2L 20	
10	0	1	5	5	0	0	2	2	
40	4	10	20	47	0	5	6	17	
100	14	53	76	144	7	33	35	64	
10000	145	548	1662	3378	80	336	672	1302	

Full (HFLF cryo) sensitivity detectors											
$\Delta \mathbf{\Omega}_{90\%}$ [deg ²]	A	All orienta	ation BNS	S		BNSs wit	h θ _v < 15°)			
	Δ10	Δ15	2L 15	2L 20	Δ10 Δ15 2L 15 2L 20						
10	11	27	24	45	Δ				1		
40	78	215	162	350							
100	280	764	644	1282	De	crease of	well-loc	alized ev	ents		
10000	2112	5441	7478	13482	is more severe for the triangula						
HF sensitivity detectors configurations											
			HF sensiti	vity detec	tor	CO:	nfigurati	ons			
$\Delta \Omega_{90\%}$ [deg ²]	A	I All orienta	HF sensiti ation BNS	vity detec Ss	tor	CO	nfigurati	ons			
$\Delta \Omega_{90\%}$ [deg ²]	Δ10	I All orienta Δ15	HF sensiti ation BNS 2L 15	vity detec s 2L 20	etors Δ10	co: Δ15	nfigurati 2L 15	ons 2L 20			
Δ Ω_{90%} [deg²] 10	Δ 10	Il orienta Δ15	HF sensiti ation BNS 2L 15 5	vity detec 5s 2L 20 5	Δ10 Δ10	Δ15 Δ15	nfigurati 2L 15 2L 15	ons 2L 20 2L 20			
ΔΩ _{90%} [deg ²] 10 40	Δ 10 0 4	Δ15 1 10	HF sensiti ation BNS 2L 15 5 20	vity detec 5s 2L 20 5 47	Δ10 0	 CO Δ15 Δ15 0 	nfigurati 2L 15 2L 15 2	ons 2L 20 2L 20 2			
ΔΩ _{90%} [deg ²] 10 40 100	Δ 10 0 4 14	Δ15 1 10 53	HF sensiti ation BNS 2L 15 5 20 76	vity detec ss 2L 20 5 47 144	Δ10 0 0	Δ15 Δ15 0 5	nfigurati 2L 15 2L 15 2 6	ons 2L 20 2L 20 2 17			

For the **on-axis** events the **percentage decrease** of well-localized events is **smaller** than for the randomly oriented ones

Full (HFLF cryo) sensitivity detectors										
$\Delta \mathbf{\Omega}_{90\%}$ [deg ²]	A	All orienta	tion BNS	S	BNSs with $\Theta_v < 15^\circ$					
	Δ10	Δ10 Δ15 2L 15 2L 20 Δ10 Δ15 2L 15 2L 2								
10	11	27	24	45	0	1	2	5		
40	78	215	162	350	8	22	20	33		
100	280	280 764 644 1282 26 74 68								
10000	2112	5441	7478	13482	272	632	1045	1725		

HF sensitivity detectors								
$\Delta \mathbf{\Omega}_{90\%} [\mathrm{deg}^2]$	A	All orientation BNSs BNSs with $\Theta_v < 15^\circ$)
	Δ10	Δ15	2L 15	2L 20	Δ10	Δ15	2L 15	2L 20
10	0	1	5	5	0	0	2	2
40	4	10	20	47	0	5	6	17
100	14	53	76	144	7	33	35	64
10000	145	548	1662	3378	80	336	672	1302

	Full (HFLF cryo) sensitivi								
$\Delta \Omega_{90\%}$ [deg ²]	A	All orientation BNSs							
	Δ10	Δ15	2L 15	2L 20					
10	11	27	24	45					
40	78	215	162	350					
100	280	764	644	1282					
10000	2112	5441	7478	13482					

2L of 15 km HF and 2L 20 km HF are worse than the 10 km triangle for randomly oriented systems

HF sensitivity detectors									
$\Delta \Omega_{90\%}$ [deg ²]	All orientation BNSs BNSs with $\Theta_v < 15^\circ$								
	Δ10	Δ15	2L 15	2L 15 2L 20 Δ10 Δ15 2L 15 2					
10	0	1	5	5	0	0	2	2	
40	4	10	20	47	0	5	6	17	
100	14	53 76 144 7 33 35						64	
10000	145	548	1662	3378	80	336	672	1302	

Full (HFLF cryo) sensitivity detectors										
$\Delta \Omega_{90\%}$ [deg ²]	A	All orienta	ation BNS	S	BNSs with $\boldsymbol{\Theta}_{v} < 15^{\circ}$					
	Δ10	Δ15	2L 15	2L 20	Δ10 Δ15 2L 15 2I					
10	11	27	24	45	0	1	2	5		
40	78	215	162	350	8	22	20	33		
100	280	764	644	1282	26	74	68	133		
10000	2112	5441	7478	13482	272	632	1045	1725		

2L of 15 km HF only is comparable to the full 10 km triangle for on-axis events

sitivity detectors										
BNS	S	BNSs with $\Theta_v < 15^\circ$								
15	2L 20	Δ10	Δ15	2L 15	2L 20					
	5	0	0	2	2					
	47	0	5	6	17					
,	144	7	33	35	64					
52	3378	80	336	672	1302					

Ability to localize the source Achievable redshift

Pre-merger detection

The importance of pre-merger alerts

Pre-merger detections are critical to detect the prompt/early multi-wavelength emission in order to:

- Probe the central engine of GRBs, and in particular to understand the jet composition, the particle acceleration mechanism, the radiation and energy dissipation mechanisms (VHE prompt CTA/ET synergy)
- To probe the structure of the outer sub-relativistic ejecta, early UV emission

[B. Banerjee et al., Astronomy&Astrophysics 678 (2023) A126]

The importance of pre-merger alerts

Pre-merger detections are critical to detect the prompt/early multi-wavelength emission in order to:

- Probe the central engine of GRBs, and in particular to understand the jet composition, the particle acceleration mechanism, the radiation and energy dissipation mechanisms (VHE prompt CTA/ET synergy)
- To probe the structure of the outer sub-relativistic ejecta, early UV emission

[B. Banerjee et al., Astronomy&Astrophysics 678 (2023) A126]

The importance of pre-merger alerts

Pre-merger detections are critical to detect the prompt/early multi-wavelength emission in order to:

- Probe the central engine of GRBs, and in particular to understand the jet composition, the particle acceleration mechanism, the radiation and energy dissipation mechanisms (VHE prompt CTA/ET synergy)
- To probe the structure of the outer sub-relativistic ejecta, early UV emission

[B. Banerjee et al., Astronomy&Astrophysics 678 (2023) A126]

Full (HFLF) cryo sensitivity detectors									
Configuration	ΔΩ _{90%}	All or	rientation	BNSs	BNSs with $\boldsymbol{\Theta}_{v} < 15^{\circ}$				
Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min		
	10	0	1	5	0	0	0		
	100	10	0 1 5 0 0 0 10 39 113 2 8 1 85 293 819 10 34 1 905 4343 23597 81 393 1 1 5 11 0 1 1 41 109 281 6 14 1 279 806 2007 33 102 1 0489 11303 48127 221 1009 1 0 1 8 0 0 1 20 54 169 2 7 1	20					
Δ10 km	1000	85	293	819	10	34	132		
	All detected	905	4343	23597	81	393	2312		
	10	1	5	11	0	1	1		
	100	41	109	281	6	14	36		
Δ15 km	1000	279	806	2007	33	102	295		
	All detected	2489	11303	48127	221	1009	4024		
	10	0	1	8	0	0	0		
	100	20	54	169	2	7	26		
2L 15 km	1000	194	565	1399	23	73	199		
	All detected	2172	9598	39499	198	863	3432		
	10	2	4	15	1	1	2		
	100	39	118	288	7	19	47		
2L 20 km	1000	403	1040	2427	47	128	346		
	All detected	4125	17294	56611	363	1588	4377		

Full (HFLF) cryo sensitivity detectors										
Configuration	ΔΩ _{90%}	All oı	rientation	BNSs	BNSs with $\boldsymbol{\Theta}_{v} < 15^{\circ}$					
Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min			
	10	0	1	5	0	0	0			
	100	10	39	113	2	8	20			
Δ10 km	1000	85	293	819	10	34	132			
	All detected	905	4343	23597	81	393	2312			
	10	1	5	11	0	1	1			
	100	41	109	281	6	14	36			
Δ15 km	1000	279	806	2007	33	102	295			
	All detected	2489	11303	48127	221	1009	4024			
	10	0	1	8	0	0	0			
	100	20	54	169	2	7	26			
2L 15 km	1000	194	565	1399	23	73	199			
	All detected	2172	9598	39499	198	863	3432			
	10	2	4	15	1	1	2			
	100	39	118	288	7	19	47			
2L 20 km	1000	403	1040	2427	47	128	346			
	All detected	4125	17294	56611	363	1588	4377			

2L 15 km better than 10 km triangle

GraSP24, Oct. 23-26 2024, Pisa

Full (HFLF) cryo sensitivity detectors									
Configuration	ΔΩ _{90%}	All or	rientation	BNSs	BNSs with $\Theta_v < 15^\circ$				
Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min		
	10	0	1	5	0	0	0		
	100	10	39	113	2	8	20		
Δ10 km	1000	85	293	819	10	34	132		
	All detected	905	4343	23597	81	393	2312		
	10	1	5	11	0	1	1		
	100	41	109	281	6	14	36		
Δ15 km	1000	279	806	2007	33	102	295		
	All detected	2489	11303	48127	221	1009	4024		
	10	0	1	8	0	0	0		
	100	20	54	169	2	7	26		
2L 15 km	1000	194	565	1399	23	73	199		
	All detected	2172	9598	39499	198	863	3432		
	10	2	4	15	1	1	2		
	100	39	118	288	7	19	47		
2L 20 km	1000	403	1040	2427	47	128	346		
	All detected	4125	17294	56611	363	1588	4377		

15 km triangle better than 10 km triangle and 2L 15 km, comparable to 2L 20 km

GraSP24, Oct. 23-26 2024, Pisa

run (rir Lr) ciyo sensitivity detectors									
Configuration	ΔΩ _{90%}	All or	ientation	BNSs	BNSs with $\boldsymbol{\Theta}_{v} < 15^{\circ}$				
Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min		
	10	0	1	5	0	0	0		
	100	10	39	113	2	8	20		
Δ10 km	1000	85	293	819	10	34	132		
	All detected	905	4343	23597	81	393	2312		
	10	1	5	11	0	1	1		
	100	41	109	281	6	14	36		
Δ15 km	1000	279	806	2007	33	102	295		
	All detected	2489	11303	48127	221	1009	4024		
	10	0	1	8	0	0	0		
_	100	20	54	169	2	7	26		
2L 15 km	1000	194	565	1399	23	73	199		
	All detected	2172	9598	39499	198	863	3432		
	10	2	4	15	1	1	2		
	100	39	118	288	7	19	47		
2L 20 km	1000	403	1040	2427	47	128	346		
	All detected	4125	17294	56611	363	1588	4377		

Similar performances for on-axis events

GraSP24, Oct. 23-26 2024, Pisa

Ulyana Dupletsa

58

HF sensitivity detectors										
Configuration	ΔΩ _{90%}	All or	ientation	BNSs	BNS	s with $\boldsymbol{\Theta}_{\mathrm{v}}$	< 15°			
Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min			
	100	0	0	0	0	0	0			
A10 km	1000	0	0	4	0	0	1			
	All detected	0	3	317	0	0	26			
	100	0	0	2	0	0	0			
A15 km	1000	0	0	10	0	0	4			
	All detected	2	8	891	0	1	84			
	100	0	0	0	0	0	0			
2L 15 km	1000	0	0	7	0	0	3			
	All detected	0	7	743	0	1	69			
	100	0	0	3	0	0	0			
21, 20 km	1000	0	0	13	0	0	6			
	All detected	2	11	1535	0	1	146			

HF sensitivity detectors										
Configuration	ΔΩ _{90%}	All or	ientation	BNS	s with O _v ·	< 15°				
Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min			
	100	0	0	0	0	0	0			
Δ10 km	1000	0	0	4	0	0	1			
	All detected	0	3	317	0	0	26			
	100	0	0	2	0	0	0			
A15 km	1000	0	0	10	0	0	4			
	All detected	2	8	891	0	1	84			
	100	0	0	0	0	0	0			
2L 15 km	1000	0	0	7	0	0	3			
	All detected	0	7	743	0	1	69			
	100	0	0	3	0	0	0			
2L 20 km	1000	0	0	13	0	0	6			
	All detected	2	11	1535	0	1	146			

	HF sensitivity detectors								
		ΔΩ _{90%}	All or	ientation	BNSs	BNSs with $\boldsymbol{\Theta}_{v} < 15^{\circ}$			
	Configuration	[deg ²]	30 min	10 min	1 min	30 min	10 min	1 min	
		100	0	0	0	0	0	0	
	Δ10 km	1000	0	0	4	0	0	1	
		All detected	0	3	317	0	0	26	
		100	0	0	2	0	0	0	
NO localiz	ed _	1000	0	0	10	0	0	4	
pre-merger dete	ections!	All detected	2	8	891	0	1	84	
		100	0	0	0	0	0	0	
Dramatic decre	ease of cm	1000	0	0	7	0	0	3	
pre-merger a	lerts	All detected	0	7	743	0	1	69	
		100	0	0	3	0	0	0	
	2L 20 km	1000	0	0	13	0	0	6	
		All detected	2	11	1535	0	1	146	

• All the triangular and 2L geometries that have been investigated can be the baseline of a **superb 3G detector**, that will allow to improve by orders of magnitude compared to 2G detectors

- All the triangular and 2L geometries that have been investigated can be the baseline of a **superb 3G detector**, that will allow to improve by orders of magnitude compared to 2G detectors
- The 2L-15km-45° configuration in general offer a better scientific return with respect to the Δ -10km, and has a similar performance on all parameters (for both BBHs and BNSs) to the Δ -15km

- All the triangular and 2L geometries that have been investigated can be the baseline of a **superb 3G detector**, that will allow to improve by orders of magnitude compared to 2G detectors
- The 2L-15km-45[°] configuration in general offer a better scientific return with respect to the Δ-10km, and has a similar performance on all parameters (for both BBHs and BNSs) to the Δ-15km
- The **low frequency sensitivity** is crucial for exploiting the full potential of ET. In the HF-configuration only, independently of the chosen geometry, several scientific targets would be lost or significantly diminished

- All the triangular and 2L geometries that have been investigated can be the baseline of a **superb 3G detector**, that will allow to improve by orders of magnitude compared to 2G detectors
- The 2L-15km-45[°] configuration in general offer a better scientific return with respect to the Δ-10km, and has a similar performance on all parameters (for both BBHs and BNSs) to the Δ-15km
- The **low frequency sensitivity** is crucial for exploiting the full potential of ET. In the HF-configuration only, independently of the chosen geometry, several scientific targets would be lost or significantly diminished
- Data analysis for the next-generation poses a great challenge

- All the triangular and 2L geometries that have been investigated can be the baseline of a **superb 3G detector**, that will allow to improve by orders of magnitude compared to 2G detectors
- The 2L-15km-45° configuration in general offer a better scientific return with respect to the Δ -10km, and has a similar performance on all parameters (for both BBHs and BNSs) to the Δ -15km
- The **low frequency sensitivity** is crucial for exploiting the full potential of ET. In the HF-configuration only, independently of the chosen geometry, several scientific targets would be lost or significantly diminished
- Data analysis for the next-generation poses a great challenge

Backup

2L: 4x2x15km = 120km

excavation volumes

GraSP24, Oct. 23-26 2024, Pisa
What is a fair comparison?

GraSP24, Oct. 23-26 2024, Pisa

What is a fair comparison?

GraSP24, Oct. 23-26 2024, Pisa

Starting Assumptions

BNSs

- IMRPhenomD_NRTidalv2 (tidal effects)
- The BNS population was obtained using MOBSE (isolated binaries) with a local merger rate of 250 Gpc⁻³ yr⁻¹ (to compare to the LVK result of 10-1700 Gpc⁻³ yr⁻¹
- 1 year of observations

BBHs

- IMRPhenomXPHM (precessing spins and higher order modes)
- Mixing of isolated evolution and dynamical evolution channels using the code FASTCLUSTER
- 1 year of observations

Populations as in Santoliquido et al 2021, Mapelli et al. 2022

Cosmology: ET + VRO

- Joint GW-kilonova detections!
- 1 year of observations
- 115 joint detections for 2L-20km-cryo
- Dependence on BNS merger rate normalization

Cosmology: ET + VRO

HFLF cryogenic			HF only		
Configuration	ΔH ₀ /H ₀	$\Delta \mathbf{\Omega}_{\mathbf{M}} / \mathbf{\Omega}_{\mathbf{M}}$	Configuration	ΔH ₀ /H ₀	$\Delta \mathbf{\Omega}_{_{\mathbf{M}}} / \mathbf{\Omega}_{_{\mathbf{M}}}$
Δ10 km	0.009	0.832	Δ10 km	0.065	1.23
Δ15 km	0.007	0.303	Δ15 km	0.057	1.86
2L 15 km	0.006	0.370	2L 15 km	0.066	1.31
2L 20 km	0.004	0.243	2L 20 km	0.031	1.22

Cosmology: ET + VRO

Dramatic reduction of joint detections without LF in both cases!

HFLF cryogenic			HF only		
Configuration	ΔH ₀ /H ₀	$\Delta \mathbf{\Omega}_{\mathrm{M}} / \mathbf{\Omega}_{\mathrm{M}}$	Configuration	$\Delta H_0/H_0$	Δ Ω _M / Ω _M
Δ10 km	0.009	0.832	Δ10 km	0.065	1.23
Δ15 km	0.007	0.303	Δ15 km	0.057	1.86
2L 15 km	0.006	0.370	2L 15 km	0.066	1.31
2L 20 km	0.004	0.243	2L 20 km	0.031	1.22