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[S.Galaudage]

LVK search types   
“CWs” 

 



Continuous Waves: persistent, quasi-monochromatic GWs 

● A completely new GW signal type: first detection will be another revolution. 
● No “blink and it’s gone” – once we’ve detected a CW, we can keep observing it, 

learning more and more about the source. 
● Neutron star science: probing dense, “cold” nuclear matter, 

studying the “dark” majority of the galactic population. 
● Exotic sources: constraints on dark matter under various 

models; of high interest to wider physics community. 
 
 
 
 
  

● No guarantee of detection in any given run, but we’ve started pushing deep into 
physically allowed parameter ranges: → a first detection could be around the corner! 

[Brito,Cardoso&Pani]

[K.Gill]
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Continuous Waves 

● extremely weak (strain: GW150914 ~10-21, CW ≲10-25 ) 
● signal duration > observing time 
● quasi-monochromatic signals: 

very slow evolution of frequency and amplitude 
● measured strain h(t) depends on intrinsic spin-down, 

Doppler effect between source and Earth, antenna 
response ⇒ h(t, h0, f, df/dt , . . . , α, δ) 
(+extra parameters for sources in binaries) 

● Matched-filter searches are effective, but need to 
sample the parameter space very finely. 

● Signal-to-noise increases with √Tobs, 
but computing cost grows much faster. 

[K. Wette] 4



● first detection can be one of the next breakthroughs of GW astronomy 
● prime targets: spinning deformed neutron stars 

− cold nuclear matter at extreme densities: 
“celestial laboratories” 

− once detected, we can keep observing 
and do long-term astrophysics studies 

− >108 neutron stars in our galaxy, only ~3000 known 
  
→ can we find the “dark” ones? 

● new physics searches: 
− modified gravity 
− dark matter: 

indirect & direct detection 
− primordial black holes 

[I.Bourgault]

[Ana Sousa]
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CWs – what are they good for? 



● simple, deterministic templates → matched filter 
● precise frequency resolution from long-term phase coherence 
● precise sky localisation, even with a single detector (the Earth moves – “E pur si muove”) 
● real data challenges: 

− loud but short glitches → require time-domain cleaning/gating 
− narrow spectral lines   → require identification and mitigation 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CW data analysis 

[Sieniawska&Bejger 2019]

searches classified by 
amount of prior 

information:

(“all-sky”) 

for an overview: 
K. Riles, LRR26:3 (2023)

[N.Kijbunchoo] 

https://doi.org/10.1007/s41114-023-00044-3


● detailed EM pulsar ephemerides 
→ fully-coherent matched filter across full GW observing runs 

● indirect spin-down upper limit 
assumes all energy loss into GWs:  

● for Crab and Vela (nearby energetic young pulsars with great timing cadence): 
already “beaten” this limit with initial LIGO/Virgo in the 2000s. 

[NASA/Fermi/ 
Cruz de Wilde] 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known pulsar searches 



“Fully targeted” searches: 
● Abbott+ ApJ935:1 (2021) 
● 236 targets, 23 below spin-down limit 
● searched at both 

 
“Narrowband” searches: 
● relax EM–GW frequency lock 

→ small template banks ~<O(106) 
● Abbott+ ApJ932:133 (2022) 
● 18 targets, 7 below spin-down limit 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known pulsars: selected O3 results 

[Abbott+ ApJ935:1] 

Bright 3G outlook: SNRs up to 105 possible with ET! [Pitkin MNRAS415,1849 (2011)] 

https://arxiv.org/abs/2111.13106
https://doi.org/10.3847/1538-4357/ac6ad0
https://arxiv.org/abs/2111.13106
https://doi.org/10.1111/j.1365-2966.2011.18818.x


● cover a large parameter space at affordable computational cost 

● simple signal model, per-template evaluation ~O(ms) 

● broad ranges in frequency, spin-downs, sky location; curved and highly structured space 

● long observing times → high resolution: 
a blessing for PE, 
a curse for searches (dense banks) 

● need to break steep computational cost scaling 
  
(at least                    for blind all-sky searches) 

● semi-coherent methods: 
statistically “suboptimal”, 
but best sensitivity at fixed cost 

[K.Wette] 9

directed & all-sky searches 



“BinarySkyHough” with GPU optimisations @  4 pipelines, incl. “SkyHough” @ 

[2012.12128] [2201.00697]
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O3 all-sky searches 

https://arxiv.org/abs/2012.12128
https://arxiv.org/abs/2201.00697


[Ana Sousa]

● Boson clouds around spinning black holes: 
superradiant energy extraction and CW-like emission, 
frequency related to particle mass 
→ O3 search: Abbott+ PRD105,102001 (2022) 

 
 
 
● low-mass compact binaries: CW-like early inspiral, 

e.g. primordial black holes [Miller+ PhDU32,100836 (2021)]. 

[I.Bourgault]
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CWs beyond neutron stars: new physics 

http://arxiv.org/abs/2111.15507
https://arxiv.org/abs/2012.12983


● direct dark matter interaction with GW detectors 
● no actual GWs involved 
● “dark photon” search in O3 LIGO data: 

Abbott+ PRD105,063030 (2022) 
● “B-L” coupling vector DM search in O3 KAGRA data: 

Abac+ PRD110,042001 (2024) 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CWs beyond neutron stars: new physics 

sapphire

silica

https://arxiv.org/abs/2105.13085
http://arxiv.org/abs/2403.03004


● binary neutron star merger remnants 
● pulsar glitches 

● magnetar and X-ray pulsar bursts
● vector boson clouds around 

spinning black holes 13

long-duration CW-like transients 



long transients: BNS remnants 
● GW170817: BNS merger at ≈ 40 Mpc 

[Abbott+ PRL119,161101 (2017)] 

● What was the remnant? 
○ direct collapse to BH? 
○ [H/S]MNS → BH? 
○ stable NS? 

● answer would tighten EoS constraints 
● indirect EM evidence for 2), 

but no direct measurement 
  

● LVC searches for short [ApJL851:L16 (2017)] 
and long-duration [ApJ875:160 (2019)] signals 
  

● long-duration CW-like signals from HM / stable NS remnant 
→ only sensitive to < 1Mpc in O2 

[Baiotti&Rezzolla2017]

[A. Nitz / LVC]
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https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa9a35
https://doi.org/10.3847/1538-4357/ab0f3d


long transients: BNS and supernovae remnants 
● BNS remnants: heavy and might have higher ellipticities, but rare at low distances 

● regular newborn NSs from core-collapse supernovae: a bit more common 

● shared signal model: rapid “power-law” spindown, but still monochromatic 

● with LVK, limited to ~few Mpc, 
3G detectors: ~dozens Mpc 
 
 

● various semi-coherent CW search methods 
have been adapted, 
including @UIB “AdaptiveTransientHough” pipeline: 
Oliver, Keitel & Sintes PRD99,104067 (2019) 

● used in GW170817 remnant search  [Abbott+ ApJ875:160 (2019)] 
15

https://doi.org/10.1103/PhysRevD.99.104067
https://doi.org/10.3847/1538-4357/ab0f3d


long transients: pulsar glitches 

[J. van Leeuwen]

● > 3000 known pulsars [ATNF]
 

● > 740 known glitches
   (as of 2022) 16



● pulsars lose energy by EM and GW emission 
→ slow spin-down 

● glitches: sudden spin-up, followed by 
relaxation phase with timescale 
(hours – months) 

● energy transfer from internal superfluid 

● and/or crustal “starquakes” 

● accompanying change in quadrupole 
moment (e.g. Yim & Jones MNRAS498,3138 (2020) 
→  GW emission 

[NASA/Goddard/Conceptual Image Lab]

→ How can we search for such GWs from glitching pulsars? 
17

long transients: pulsar glitches 

https://doi.org/10.1093/mnras/staa2534
https://svs.gsfc.nasa.gov/20267


standard CW 
signal model=transient CW window function

1)  short-duration bursts from f-modes excited at the glitch: 
 Lopez+ PRD106.103037 (2022) → search with e.g. cWB 
 
  

2)  long-duration transient GWs: “tCWs” [Prix+ PRD84,023007 (2011)] 
  
 standard CW model, but in addition to phase and amplitude parameters, 
 also consider transient parameters defining a window in time:  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long transients: pulsar glitches 

https://doi.org/10.1103/PhysRevD.106.103037
https://doi.org/10.1103/PhysRevD.84.023007


[Chandra/NASA]

[Chandra/NASA]

[1907.04717]
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tCW searches so far – O2 open data 

https://arxiv.org/abs/1907.04717


● improved version of O2 search: better setup [*] of template banks, BtS/G statistic [**], 
“distromax” method [***] for setting thresholds 

J0534+2200

   fGW ~ 60 Hz

glitched on 
2019/07/23

J0537-6910

     fGW ~ 123 Hz

3 glitches in 2019, 
1 glitch in 2020

J0908-4913

     fGW ~ 19 Hz

glitched ~ 
2019/10/09

J1105-6107

     fGW ~ 31 Hz

glitched ~ 
2019/04/09

J1813-1749

    fGW ~ 45 Hz

glitched ~ 
2019/08/03

J1826-1334

     fGW ~ 20 Hz

glitched on 
2020/01/31

[*] 2201.08785; [**] 1104.1704;  [***]  2111.12032

[2112.10990]
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tCW searches so far – O3 LVK search 
With 

contributions 
from 

https://arxiv.org/abs/2201.08785
https://arxiv.org/abs/1104.1704
https://arxiv.org/abs/2111.12032
https://arxiv.org/abs/2112.10990


tCWs with CNNs  

● transient     -stat searches are computationally limited, mainly from trying many (t0,τ) combinations 

● finding a (t)CW in time-frequency data is basically pattern recognition 

● Convolutional Neural Networks (CNNs) are great at doing that fast. (At least for cats and dogs.) 

● But actually limited in finding the very weak, narrow, long tracks. (see Joshi&Prix 2305.01057) 
  
→ our hybrid approach: feed matched-filter intermediate data products to the CNN! 

[2303.16720]
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https://arxiv.org/abs/2305.01057
https://arxiv.org/abs/2303.16720


CNN upper limits on O2 Vela glitch 

Limitations: 
  

● Allowing for flexible amplitude evolution, but fixed to tCW frequency evolution model. 

● Faster than pure transient F-stat,  
but still far too slow for going beyond known pulsars.  → new approach needed for

“All-Sky All-Frequency All-Time”

searches for unknown glitchers!
22

● Faster! 

● Got close to pure F-stat 
performance, but not quite 
matching it. 



tCWs: prospects 
ATNF + Jodrell glitch catalogues 
→ 740 known glitches (2022/10/11) 
→ extrapolate future prospects 

● Sensitivity depth 
[Behnke+2014,Dreissigacker+2018] 
estimated for realistic searches 

● compare indirect energy UL: 
 
 
 

● plot for duration τ = 10 d 

● longer/shorter τ: 
push both markers and curves 
down/up by sqrt(τ) 
→ same detectability 

[2210.09907]

Best target: Vela! 
Glitches every ~18m. 

Next, please…?  23

https://arxiv.org/abs/1410.5997
https://arxiv.org/abs/1808.02459
https://arxiv.org/abs/2210.09907
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…2024: Vela glitched again! 

[Chandra/NASA]

● Vela pulsar: nearby (287pc), frot ∼ 11 Hz → fgw ∼ 22 Hz 
● strong glitches (Δf / f ∼ 10-6) every 1.5 years or so. 
● first LSC search for short bursts from 2006 glitch 

[Abadie+2011b]. 
● first tCW search on O2 open data for 2016 glitch 

[Keitel+2019]. 
● no glitch during O3, last in 2021, then got lucky in O4! 

E. Zubieta+, 
Argentine Institute of Radio 
astronomy 
[www.astronomerstelegram.org/
?read=16608] 

We observed a glitch occurring
between MJD 60428.96 (2024-04-28 23h UTC)

and MJD 60431.84 (2024-05-01 20h UTC). [...] change 
in the pulsar rotation period of dF0/F0 = 2.3E-6 [...]

J. Palfreyman,
Mt. Pleasant Telescope, 
Tasmania 
[www.astronomerstelegram
.org/?read=16615]

glitch epoch of MJD 60429.869615 +/- 3.84691e-05 
dF0/F0 of 2.40976e-06 +/- 4.88083e-10

(also confirmed by other 
radio telescopes and FERMI) 

https://arxiv.org/abs/1011.1357
https://arxiv.org/abs/1907.04717
https://www.astronomerstelegram.org/?read=16608
https://www.astronomerstelegram.org/?read=16608
https://www.astronomerstelegram.org/?read=16615
https://www.astronomerstelegram.org/?read=16615


Conclusions: the next first detection? 

[STScI/NASA]
[J. van Leeuwen]

● continuous waves from known pulsars? 
● continuous waves from unknown neutron? 

stars in our galaxy? 
● continuous waves from exotic objects 

(PBHs, boson clouds)? 
● CW-style dark matter direct detection? 
● long transients from glitching pulsars? 
● long transients from newborn neutron stars 

(supernovae / BNS remnants)? 
● Either way: rich potential for 

astrophysics, nuclear physics,
and fundamental physics

[Ana Sousa] 25
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