

UNIVERSITYOF BIRMINGHAM

Christian Chapman-Bird, *University of Birmingham* **GraSP24, University of Pisa**

Extreme-mass-ratio inspiral waveforms

How It's Made

- Long-lived gravitational wave sources driven by strong-field relativistic dynamics.
- Stellar-mass compact object (CO) inspirals into massive black holes (MBHs) are a primary target of the LISA mission.
- Their intricate dynamics enable high measurement precision, making them astrophysical probes of enormous potential.
	- **• Christopher Berry's talk**
- However, such complexity is challenging to model accurately at feasible cost.
	- **• This talk (to some extent!)**

Extreme-mass-ratio inspirals (EMRIs)

To build a waveform…

EMRIs are ill-suited to equal-mass binary modelling techniques.

- The computational cost of numerical relativity simulations of compact binaries scales with the (large) mass ratio of the system.
	- EMRIs are very expensive per orbital cycle, and the system must be modelled for **tens of thousands** of orbital cycles (with eccentricity).
- The inspiralling body is relativistic standard Post-Newtonian expansions converge extremely poorly.
- **• Gravitational self-force:** treats the metric deformation of the smaller body as a small perturbation in the spacetime of the larger body.

Multivoice decomposition framework

$h(t) =$ *μ* d_{L} ∑ *lmkn*

 $H_{lmkn}(t,\theta,\phi)e^{-i\Phi_{mkn}(t)}$

Multivoice decomposition framework

$h(t) =$ *μ* d_{L} ∑ *lmkn* CO mass

Luminosity distance

(*l*, *m*, *k*, *n*) are harmonic mode indices

Harmonic of orbital phases

 $\Phi_{mkn} = m\Phi_{\phi} + k\Phi_{\theta} + n\Phi_{r}$

(Angle-dependent) mode amplitude

 $H_{lmkn}(t, \theta, \phi)e^{-i\Phi_{mkn}(t)}$

Some other parameter conventions…

- *M* : MBH mass
	- *ϵ* : Small mass ratio (*μ*/*M*)
	- *a* : MBH (dimensionless) spin parameter
	- *p* : Inspiral semi-latus rectum
	- *e* : Inspiral eccentricity
- x_I : Cosine of inspiral inclination

Some other parameter conventions…

- *M* : MBH mass
	- *ϵ* : Small mass ratio (*μ*/*M*)
	- *a* : MBH (dimensionless) spin parameter
	- *p* : Inspiral semi-latus rectum
	- *e* : Inspiral eccentricity
- x_I : Cosine of inspiral inclination

Orbital elements (evolve with time)

Osculating geodesics: At any time, orbit is described by parameters of tangent geodesic

ODE system: integrate numerically

$$
\frac{dp}{dt} = \epsilon f_p(a, p, e, x_I) + \mathcal{O}(\epsilon^2)
$$
\n
$$
\frac{de}{dt} = \epsilon f_e(a, p, e, x_I) + \mathcal{O}(\epsilon^2)
$$
\n
$$
\frac{dx_I}{dt} = \epsilon f_{x_I}(a, p, e, x_I) + \mathcal{O}(\epsilon^2)
$$
\n
$$
\frac{d\Phi_{\phi, \theta, r}}{dt} = \Omega_{\phi, \theta, r}(a, p, e, x_I) + \mathcal{O}(\epsilon)
$$

M

d*t*

Osculating geodesics: At any time, orbit is described by parameters of tangent geodesic

ODE system: integrate numerically

Osculating geodesics: At any time, orbit is described by parameters of tangent geodesic

ODE system: integrate numerically

$$
\frac{dp}{dt} = \epsilon f_p + \mathcal{O}(\epsilon^2)
$$
\n
$$
\frac{de}{dt} = \epsilon f_e + \mathcal{O}(\epsilon^2)
$$
\n
$$
\frac{dx_I}{dt} = \epsilon f_{x_I} + \mathcal{O}(\epsilon^2)
$$
\n
$$
\frac{d\Phi_{\phi,\theta,r}}{dt} = \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)
$$

M

d*t*

Fluxes from Teukolsky equation

ODE system: integrate numerically

$$
\frac{dp}{dt} = \epsilon f_p + \mathcal{O}(\epsilon^2)
$$

$$
\frac{de}{dt} = \epsilon f_e + \mathcal{O}(\epsilon^2)
$$

$$
\frac{dx_I}{dt} = \epsilon f_{x_I} + \mathcal{O}(\epsilon^2)
$$

$$
d\Phi_{\phi,\theta,r}
$$

$$
M\frac{\mathrm{d}\Phi_{\phi,\theta,r}}{\mathrm{d}t} = \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)
$$

Geodesic orbital frequencies

Fluxes from Teukolsky equation

ODE system: integrate numerically

 IC

$$
M\frac{\mathrm{d}\Phi_{\phi,\theta,r}}{\mathrm{d}t} = \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)
$$

$$
\frac{dp}{dt} = \epsilon f_p + \delta \epsilon^2
$$
\n
$$
\frac{de}{dt} = \epsilon f_e + \delta \epsilon^2
$$
\n
$$
\frac{dx_I}{dt} = \epsilon f_{x_I} + \delta \epsilon^2
$$
\nAdiabat order

Geodesic orbital frequencies

Fluxes from Teukolsky equation

Orbital trajectory modelling… quickly

- The computationally expensive fluxes f_{p,e,x_I} are typically evaluated times per trajectory integration. \int_{p,e,x_I} are typically evaluated $\mathcal{O}(10^4)$)
- We require millisecond trajectory evaluation → microsecond flux **evaluation!**
- Only practical solution is to approximate these quantities via interpolation.
- Adaptive time-stepping yields trajectories of $\mathcal{O}(10^2)$ points. (10^2)

 $-\log \frac{dp}{dt}$ d*t*

Phase accuracy is **essential**!

Mode amplitudes

- A_{lmkn} : Obtained by solving Teukolsky equation (expensive!)
- S_{lmkn} : Spin-weighted spheroidal harmonics (also expensive!)

 $H_{lmkn}(t, \theta, \phi) \approx \mathcal{A}_{lmkn}(a, p, e, x_l)$ ₋₂ $Y_{lm}(\theta, \phi)$

 $H_{lmkn}(t, \theta, \phi) = A_{lmkn}(a, p, e, x_l) \times S_{lmkn}(\theta, \Omega_{mkn})e^{im\phi}$

One can show that A_{lmkn} can be projected onto a spherical harmonic basis: Hughes (2000)

Mode amplitude interpolation

- \mathscr{A}_{lmkn} are smoothly varying and interpolated well with tensor cubic splines. *lmkn*
- As $N(\mathcal{A}_{lmkn})$ is large, they must be interpolated very efficiently.
- Embarrassingly parallelisable problem, so we can use graphics processing units (GPUs) to great effect.
- Compute $\mathcal{O}(10^4)$ mode amplitudes at each sparse trajectory point in $\sim 10\,\mathrm{ms}.$

p e

Grids in (*a*, *p*, *e*, *xI*)

Trajectory Vectorised amplitude interpolation

1. Interpolate these quantities with splines to obtain continuous representation

Very expensive for LISA waveforms \rightarrow use GPUs for $\mathscr{O}(10^4)$ times speedup.

-
- 2. Sum over spline outputs at each requested time

Summation With Φ*mkn* and *Hlmkn* at sparse points along the trajectory…

$$
h(t) = \frac{\mu}{d_{\text{L}}} \sum_{lmkn} H_{lmkn}(t, \theta, \phi) e^{-i\Phi_{mkn}(t)}
$$

Summation - mode selection

Truncate **cumulative summation** at some threshold fraction *ε* of the total mode power

Truncate **cumulative summation** at some threshold fraction *ε* of the total mode power

• Millisecond waveform generation with GPUs without compromising accuracy

- FEW is currently limited to eccentric inspirals into Schwarzschild MBHs.
-

Bringing it all together FastEMRIWaveforms (FEW) Part of the **Black Hole Perturbation Toolkit** Katz *et al.* (2021)

-
- Modular framework \rightarrow build your own waveform models!

• Lays the necessary groundwork for building LISA-ready EMRI waveforms.

What comes next?

Kerr Eccentric Equatorial waveforms Chapman-Bird *et al.* (in prep)

- We expect many MBHs to be spinning rapidly; this strongly impacts EMRI measurement precision. Babak *et al.* (2017)
- Including MBH spin means $2D \rightarrow 3D$ data grids, requiring new and efficient interpolation codes for fluxes and mode amplitudes.
- Also plan to properly explore interpolation error and ensure that FEW waveforms are **accurate.**
- Waveform model complete in $\mathcal{O}($ weeks).

And after that…

Add inclination: the final step for generic inspirals at adiabatic order.

Hughes *et al.* (2021) Van de Meent (2017)

Orbital resonances

- Step-change in (p, e, x)
- Occurs when Ω_{θ} and Ω_{r} become commensurate:

- Only impactful for inclined and eccentric inspirals
- Phase error scales as *ϵ*−1/2

$$
a\Omega_{\theta} = b\Omega_r \qquad \qquad ^{0.4}_{0.2}
$$

 0.25

 $0.0($

 -0.25

 -0.50

 h_{+}

 h_+

 -0.2

 -0.4

And after that…

See Lynch *et al.* (2024) for further details.

And after that…

d*p* d*t* $= \epsilon f_p + \mathcal{O}(\epsilon^2)$ $M \frac{d\mathcal{L} - \varphi, \theta, r}{dt} = \Omega_{\varphi, \theta, r} + \mathcal{O}(\epsilon) \qquad \frac{d\mathcal{L}}{dt} = \epsilon f_e + \mathcal{O}(\epsilon^2)$ $d\Phi_{\phi,\theta,r}$ d*t* $= \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)$

d*e* d*t* dx _{*I*} d*t* $=$ ϵf *xI*

+ (*ϵ*² **Post-adiabatic (1PA) corrections**)

• Phase error scales as ϵ^0

Schwarzschild quasi-circular: Albertini *et al.* (2022)

Some astrophysics...

EMRIs as cosmological probes

EMRIs are broad-band signals of long duration → **excellent measurement of extrinsic parameters.**

Vera C. Rubin Observatory FOV 3.5 square degrees

EMRI skymap 0.2 square degrees

- A (fairly ideal) source at $z = 1$ can be localised to < 1 deg² with a luminosity distance error of $\mathcal{O}(1\%)$. $\langle 1 \text{ deg}^2$
- Skymap fits neatly into a single tile of future wide-field survey telescopes!
- EMRIs an excellent candidate for GW cosmology with galaxy catalogues(*) or direct detection of EM counterparts.

Laghi *et al.* (2021)

- EMRIs are also a good candidate for measuring lensing effects.
- Rates are fairly low (but EMRI rates are not well-known anyway!) Toscani *et al.* (2024)
- An example (left): wave-optics lensing effects break position/distance degeneracy (lens mass of $10^{5} M_{\odot}$). $10^5 M_{\odot}$
- Type-II lensing effects trivial to identify in EMRI signals - smoking gun for lensed source

Measuring waveoptics lensing effects See Martina Toscani's talk!

- A realistic prospect due to small localisation volume.
- Information from signal analysis (e.g. MBH mass, lens parameters) can be incorporated statistically.
- Even a single case can enable $O(1\%)$ constraint on H_0 . Toscani *et al.* (2024)

Together: localising a gravitational lens

Conclusions

- EMRIs have complicated waveforms that are challenging to model.
- With GPU parallelism, we can produce EMRI waveforms in milliseconds (**FastEMRIWaveforms**) without loss of accuracy or generality.
	- A number of improvements to come in the near future, but the core framework is in place to implement these improvements.
	- Kerr Eccentric Equatorial waveforms will be available in $\mathcal{O}($ weeks)! **Chapman-Bird** *et al.* (in prep)
- The long duration and strong harmonic mode content of EMRIs makes them excellent candidates for both cosmological and lensing analyses.

FastEMRIWaveforms

- **Black Hole Perturbation Toolkit**
- **c.chapman-bird@bham.ac.uk**

