

JNIVERSITYOF BIRMINGHAM

HOW It's Made

Christian Chapman-Bird, University of Birmingham

Extreme-mass-ratio inspiral waveforms

GraSP24, University of Pisa

Extreme-mass-ratio inspirals (EMRIs)

- Long-lived gravitational wave sources driven by strong-field relativistic dynamics.
- Stellar-mass compact object (CO) inspirals into massive black holes (MBHs) are a primary target of the LISA mission.
- Their intricate dynamics enable high measurement precision, making them astrophysical probes of enormous potential.
 - Christopher Berry's talk
- However, such complexity is challenging to model accurately at feasible cost.
 - This talk (to some extent!)

To build a waveform...

EMRIs are ill-suited to equal-mass binary modelling techniques.

- The computational cost of numerical relativity simulations of compact binaries scales with the (large) mass ratio of the system.
 - EMRIs are very expensive per orbital cycle, and the system must be modelled for tens of thousands of orbital cycles (with eccentricity).
- The inspiralling body is relativistic standard Post-Newtonian expansions converge extremely poorly.
- Gravitational self-force: treats the metric deformation of the smaller body as a small perturbation in the spacetime of the larger body.

Multivoice decomposition framework

Hughes et al. (2021)

$h(t) = \frac{\mu}{d_{\rm L}} \sum_{lmkn} H_{lmkn}(t,\theta,\phi) e^{-i\Phi_{mkn}(t)}$

Multivoice decomposition framework

Hughes et al. (2021)

CO mass $h(t) = \frac{\mu}{d_{\rm L}} \sum_{lmkn} H$

Luminosity distance

(l, m, k, n) are harmonic mode indices

(Angle-dependent) mode amplitude

 $\int H_{lmkn}(t,\theta,\phi)e^{-i\Phi_{mkn}(t)}$

Harmonic of orbital phases

 $\Phi_{mkn} = m\Phi_{\phi} + k\Phi_{\theta} + n\Phi_r$

Some other parameter conventions...

- M: MBH mass
 - ϵ : Small mass ratio (μ/M)
 - a : MBH (dimensionless) spin parameter
 - p: Inspiral semi-latus rectum
 - e: Inspiral eccentricity
- x_I : Cosine of inspiral inclination

Some other parameter conventions...

- M: MBH mass
 - ϵ : Small mass ratio (μ/M)
 - a : MBH (dimensionless) spin parameter
 - p: Inspiral semi-latus rectum
 - e: Inspiral eccentricity
- x_I : Cosine of inspiral inclination

parameter Orbital elements (evolve with time)

Osculating geodesics: At any time, orbit is described by parameters of tangent geodesic

Hughes et al. (2021)

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \epsilon f_p(a, p, e, x_I) + \mathcal{O}(\epsilon^2)$$
$$\frac{\mathrm{d}e}{\mathrm{d}t} = \epsilon f_e(a, p, e, x_I) + \mathcal{O}(\epsilon^2)$$
$$\frac{\mathrm{d}x_I}{\mathrm{d}t} = \epsilon f_{x_I}(a, p, e, x_I) + \mathcal{O}(\epsilon^2)$$
$$M\frac{\mathrm{d}\Phi_{\phi,\theta,r}}{\mathrm{d}t} = \Omega_{\phi,\theta,r}(a, p, e, x_I) + \mathcal{O}(\epsilon)$$

ODE system: integrate numerically

d*t*

Osculating geodesics: At any time, orbit is described by parameters of tangent geodesic

Hughes et al. (2021)

ODE system: integrate numerically

Osculating geodesics: At any time, orbit is described by parameters of tangent geodesic

Hughes et al. (2021)

Fluxes from **Teukolsky equation**

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \epsilon f_p + \mathcal{O}(\epsilon^2)$$
$$\frac{\mathrm{d}e}{\mathrm{d}t} = \epsilon f_e + \mathcal{O}(\epsilon^2)$$
$$\frac{\mathrm{d}x_I}{\mathrm{d}t} = \epsilon f_{x_I} + \mathcal{O}(\epsilon^2)$$
$$M\frac{\mathrm{d}\Phi_{\phi,\theta,r}}{\mathrm{d}t} = \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)$$

ODE system: integrate numerically

d*t*

Hughes et al. (2021)

Fluxes from Teukolsky equation

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \epsilon f_p + \mathcal{O}(\epsilon^2)$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \epsilon f_e + \mathcal{O}(\epsilon^2)$$

$$\frac{\mathrm{d}x_I}{\mathrm{d}t} = \epsilon f_{x_I} + \mathcal{O}(\epsilon^2)$$

$$\mathbf{I}\Phi_{\phi,\theta,r} = \mathbf{O}(\epsilon^2)$$

Geodesic orbital frequencies

$$M \frac{\mathrm{d}\Phi_{\phi,\theta,r}}{\mathrm{d}t} = \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)$$

ODE system: integrate numerically

Hughes et al. (2021)

Fluxes from Teukolsky equation

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \epsilon f_p + \mathcal{O}(\epsilon^2)$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \epsilon f_e + \mathcal{O}(\epsilon^2)$$

$$\frac{\mathrm{d}x_I}{\mathrm{d}t} = \epsilon f_{x_I} + \mathcal{O}(\epsilon^2)$$
Adiabat
order

Geodesic orbital frequencies

$$M \frac{\mathrm{d}\Phi_{\phi,\theta,r}}{\mathrm{d}t} = \Omega_{\phi,\theta,r} + \mathcal{O}(c)$$

ODE system: integrate numerically

tic

Orbital trajectory modelling... quickly

- The computationally expensive fluxes f_{p,e,x_I} are typically evaluated $\mathcal{O}(10^4)$ times per trajectory integration.
- We require millisecond trajectory evaluation \rightarrow microsecond flux evaluation!
- Only practical solution is to approximate these quantities via interpolation.
- Adaptive time-stepping yields trajectories of $\mathcal{O}(10^2)$ points.

Katz *et al.* (2021)

 $-\log \frac{\mathrm{d}p}{\mathrm{d}t}$

Phase accuracy is **essential**!

Mode amplitudes

- A_{lmkn}: Obtained by solving Teukolsky equation (expensive!)
- *S_{lmkn}* : Spin-weighted spheroidal harmonics (also expensive!)

 $H_{lmkn}(t,\theta,\phi) \approx \mathscr{A}_{lmkn}(a,p,e,x_l)_2 Y_{lm}(\theta,\phi)$

 $H_{lmkn}(t,\theta,\phi) = A_{lmkn}(a,p,e,x_{I}) \times S_{lmkn}(\theta,\Omega_{mkn})e^{im\phi}$

One can show that A_{lmkn} can be projected onto a spherical harmonic basis: Hughes (2000)

Mode amplitude interpolation

- *Imkn* are smoothly varying and interpolated well with tensor cubic splines.
- As $N(\mathscr{A}_{lmkn})$ is large, they must be interpolated very efficiently.
- Embarrassingly parallelisable problem, so we can use graphics processing units (GPUs) to great effect.
- Compute $\mathcal{O}(10^4)$ mode amplitudes at each sparse trajectory point in $\sim 10 \,\mathrm{ms}$.

Vectorised amplitude interpolation

Grids in (a, p, e, x_I)

Summation With Φ_{mkn} and H_{lmkn} at sparse points along the trajectory...

$$h(t) = \frac{\mu}{d_{\rm L}} \sum_{lmkn} H_{lmkn}(t,\theta,\phi) e^{-i\Phi_{mkn}(t)}$$

- 2. Sum over spline outputs at each requested time

Katz *et al.* (2021)

1. Interpolate these quantities with splines to obtain continuous representation

Very expensive for LISA waveforms \rightarrow use GPUs for $\mathcal{O}(10^4)$ times speedup.

Summation - mode selection

Katz et al. (2021)

Katz et al. (2021)

Katz et al. (2021)

Truncate cumulative summation at some threshold fraction ε of the total mode power

Truncate cumulative summation at some threshold fraction ε of the total mode power

Bringing it all together Katz *et al.* (2021) **C FastEMRIWaveforms (FEW)** Part of the Black Hole Perturbation Toolkit (2)

- Modular framework \rightarrow build your own waveform models!

- FEW is currently limited to eccentric inspirals into Schwarzschild MBHs.

Millisecond waveform generation with GPUs without compromising accuracy

Lays the necessary groundwork for building LISA-ready EMRI waveforms.

What comes next?

Chapman-Bird et al. (in prep) Kerr Eccentric Equatorial waveforms

- We expect many MBHs to be spinning rapidly; this strongly impacts EMRI measurement precision. Babak et al. (2017)
- Including MBH spin means $2D \rightarrow 3D$ data grids, requiring new and efficient interpolation codes for fluxes and mode amplitudes.
- Also plan to properly explore interpolation error and ensure that FEW waveforms are accurate.
- Waveform model complete in $\mathcal{O}(weeks)$.

And after that...

Add inclination: the final step for generic inspirals at adiabatic order.

Hughes et al. (2021) Van de Meent (2017)

And after that...

Orbital resonances

- Step-change in (p, e, x_I)
- Occurs when $\Omega_{ heta}$ and Ω_r become commensurate:

 h_+

 h_+

-0.4

-0.25

-0.50

- Only impactful for inclined and eccentric inspirals
- Phase error scales as $e^{-1/2}$

See Lynch et al. (2024) for further details.

And after that...

Post-adiabatic (1PA) corrections

• Phase error scales as ϵ^0

Schwarzschild quasi-circular: Albertini et al. (2022)

 $d\Phi_{\phi,\theta,r}$ $= \Omega_{\phi,\theta,r} + \mathcal{O}(\epsilon)$ Md*t* dp $=\epsilon f_p + \mathcal{O}(\epsilon^2)$ d*t*

 $\frac{\mathrm{d}e}{\mathrm{d}t} = \epsilon f_e + \mathcal{O}(\epsilon^2)$ $\frac{\mathrm{d}x_I}{\mathrm{d}t} = \epsilon f_{x_I} + \mathcal{O}(\epsilon^2)$

Some astrophysics...

EMRIs as cosmological probes

EMRIs are broad-band signals of long duration \rightarrow excellent measurement of extrinsic parameters.

- A (fairly ideal) source at z = 1 can be localised to $< 1 \, deg^2$ with a luminosity distance error of $\mathcal{O}(1\%)$.
- Skymap fits neatly into a single tile of future wide-field survey telescopes!
- EMRIs an excellent candidate for GW cosmology with galaxy catalogues(*) or direct detection of EM counterparts.

Laghi *et al.* (2021)

Vera C. Rubin Observatory FOV **3.5 square degrees**

EMRI skymap 0.2 square degrees

See Martina Toscani's talk! Measuring waveoptics lensing effects

- EMRIs are also a good candidate for measuring lensing effects.
- Rates are fairly low (but EMRI rates are not well-known anyway!)
 Toscani *et al.* (2024)
- An example (left): wave-optics lensing effects break position/distance degeneracy (lens mass of $10^5 M_{\odot}$).
- Type-II lensing effects trivial to identify in EMRI signals - smoking gun for lensed source

Together: localising a gravitational lens

- A realistic prospect due to small localisation volume.
- Information from signal analysis (e.g. MBH mass, lens parameters) can be incorporated statistically.
- Even a single case can enable $\mathcal{O}(1\%)$ constraint on H_0 . Toscani *et al.* (2024)

Conclusions

- EMRIs have complicated waveforms that are challenging to model.
- With GPU parallelism, we can produce EMRI waveforms in milliseconds (FastEMRIWaveforms) without loss of accuracy or generality.
 - A number of improvements to come in the near future, but the core framework is in place to implement these improvements.
 - **Chapman-Bird** *et al.* (in prep) - Kerr Eccentric Equatorial waveforms will be available in $\mathcal{O}(\text{weeks})!$
- The long duration and strong harmonic mode content of EMRIs makes them excellent candidates for both cosmological and lensing analyses.

FastEMRIWaveforms

- **OBJACK Hole Perturbation Toolkit**
- **C.chapman-bird@bham.ac.uk**

