The precision science of extreme mass-ratio inspirals

Christopher Berry • cplberry.com • @cplberry GraSP24 • 24 October 2024 • arXiv:1903.03686 arXiv:2212.06166

University School of Physics of Glasgow & Astronomy

Science and Technology Facilities Council

Image: LIGO/Caltech/MIT/Sonoma State/Aurore Simonnet

Open	Return
Open In New Tab	Ctrl+Return
Open In New Window	Shift+Return
Open With Other Application	
Cut	Ctrl+X
Сору	Ctrl+C
Move to	
Copy to	
Move to the Rubbish Bin	Delete
Rename	F2
Compress	
Send to	
Dropbox	•
Local Network Share	
Open in Terminal	
Revert to Previous Version	
Properties	Ctrl+I

An undiscovered source Massive black holes and stellar companions

Precision measurement Intricate orbits in the strong field

Black hole astrophysics Using a population to build understand

An undiscovered source

Spoilers

Signals encode information about their sources

GW150914 parameter estimation arXiv:1602.03840

GW150914 astrophysical implications arXiv:1602.03846 **14 September 2015** we observed gravitational waves

The signal came from the coalescence of a **near-equal mass** binary black hole

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation

Gravitational-wave spectrum

Different technologies used for different frequency ranges

Currently, LIGO, Virgo and KAGRA observe at highest frequencies

LISA is due for launch in 2030s

Pulsar timing arrays observe at lowest frequencies

LISA

LISA mission accepted by ESA in January, launch planned for 2035

LISA can contribute to a wide range of astrophysics arXiv:2203.06016

Data analysis will be extremely complicated lisa-ldc.lal.in2p3.fr

Extreme mass-ratio inspirals (EMRIs) source massive black hole + stellar-mass companion. Mass ratio $q \sim 10^{-5}$ arXiv:astro-ph/0703495

Intermediate mass-ratio inspirals (IMRIs) q ~ 10⁻³

Binary extreme mass-ratio inspirals (b-EMRIs) source massive black hole + stellar-mass binary arXiv:1801.05780

Extremely large mass-ratio inspirals (XMRIs) source massive black hole + subsolar-mass companion $q < 10^{-8}$ arXiv:1903.10871

EMRIs complete many orbits in the strong-field regime. Number of orbits $\sim 1/q$

Waveforms have a complicated frequency structure, e.g., Speri *et al.* arXiv:2307.12585

Complexity encodes information about the background spacetime, e.g., Barack & Cutler arXiv:gr-qc/0310125

Precision measurement

EMRI populations are uncertain. Rates range from ~1 to 10³ per year

Results are sensitive to choice of waveform

AKK analytic kludge Kerr AKS analytic kludge Schwarzschild (pessimistic)

Babak, ..., CPLB et al. arXiv:1703.09722

Distance sets amplitude

Massive black hole spin influences spacetime close to the black hole

Deviations in the **quadrupole moment** would identify a non-Kerr spacetime

EMRIs can provide precision tests of general relativity, e.g., Cárdenas-Avendaño & Sopuerta arXiv:2401.08085

Eccentricity influences set of frequencies

important for searching for electromagnetic counterparts and association with host galaxy and cosmology

Measurement of the cosmological parameters Laghi *et al.* arXiv:2102.01708

Using up-to-date equatorial waveforms

Can measure environmental or non-Kerr effects

Black hole astrophysics

EMRI formation

Population inference requires: 1. Parameter estimates for each signal 2. A population model 3. Accounting for selection effects

How to account for selection effects Mandel *et al.* arXiv:1809.02063

Validation

Not accounting for selection effects leads to biases

Linear interpolation is insufficient

Our neural network approach works

Chapman-Bird, CPLB & Woan arXiv:2212.06166

Validation

Not accounting for selection effects leads to biases

Linear interpolation is insufficient

Our neural network approach works

Chapman-Bird, CPLB & Woan arXiv:2212.06166

Validation

Not accounting for selection effects leads to biases

Linear interpolation is insufficient

Our neural network approach works

And is quick enough to run **hundreds** of population inferences!

poplar code DOI:10.5281/zenodo. 7573034

Chapman-Bird, CPLB & Woan arXiv:2212.06166

For sources with redshift < 6 and an optimistic event rate

MBH mass function slope: 9%

CO mass function slope 5%

Width of the MBH spin magnitude distribution 10%

Event rate 12%

- 1. Extreme mass-ratio inspirals have intricate waveforms
- 2. They enable **precision measurements** of individual sources, and a unique insight into the population
- 3. Significant work is needed to develop LISA data analysis

ALIA Bender, Begelman & Gair 2013 TianOin Luo et al. arXiv:1512.02076 Taiii Ruan et al. arXiv:1807.09495 **DECIGO** Kawamura et al. arXiv:2006.13545 TianGO Kuns et al. arXiv:1908.06004 **GADFLI** McWillians arXiv:1111.3708 gLISA Tinto et al. arXiv:1410.1813 **SAGE** | acour *et al.* arXiv:1811.04743 MAGIS Graham et al. arXiv:1711.02225 AEDGE Abou El-Neaj et al. arXiv:1908.00802 **Big Bang Observer** Crowder & Cornish arXiv:gr-qc/0506015 **DO-Conservative & DO-Optimal** Arca Sedda. CPLB et al. arXiv:1908.11375

Gravitational-wave spectrum

Results depend upon waveforms. Rapid development in recent years LISA arXiv:2311.01300

EMRI waveforms calculated using gravitational self-force, e.g., Barack & Pound arXiv:1805.10385

Fast EMRI Waveform (FEW) package available Chua *et al.* arXiv:2008.06071 Katz *et al.* arXiv:2104.04582

FEW package

- [5]: plt.plot(t[-1000:], wave.real[-1000:])
 plt.plot(t[-1000:], wave.imag[-1000:])
- [5]: [<matplotlib.lines.Line2D at 0x7fdf9853f850>]

Katz et al.

bhptoolkit.org/FastEMRIWaveforms/

EMRI frequencies

EMRIs are typically described by 3 frequencies: radial, polar and azimuthal

Orbital frequencies in Kerr Schmidt arXiv:gr-qc/0202090

EMRI horizon

EMRIs can be seen to cosmological redshifts

Resonances -80Adaibatic SNR ρ_{AK} 70Overlap-weighted SNR $\mathbb{O}\rho_{AK}$ **Transient resonances** 60 need to be accounted for in evolution Count per bin Flanagan & Hinderer 50arXiv:1009.4923 40Most resonances are late in inspiral, and 30 less important for low eccentricity orbits 20100 25301015203540505 45CPLB et al. arXiv:1602.03839 Signal-to-noise ratio

Population models

EMRI populations are uncertain. Rates range from ~1 to 10³ per year

Results are sensitive to choice of waveform

AKK analytic kludge Kerr AKS analytic kludge Schwarzschild (pessimistic)

Model	Mass function	MBH spin	Cusp erosion	$M-\sigma$ relation		CO mass $[M_{\odot}]$	EMRI rate [yr ⁻¹]		
					N _p		Total	Detected (AKK)	Detected (AKS)
M1	Barausse12	a98	yes	Gultekin09	10	10	1600	294	189
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400	220	146
M3	Barausse12	a98	yes	GrahamScott13	10	10	2770	809	440
M4	Barausse12	a98	yes	Gultekin09	10	30	520 (620)	260	221
M5	Gair10	a98	no	Gultekin09	10	10	140	47	15
M6	Barausse12	a98	no	Gultekin09	10	10	2080	479	261
M7	Barausse12	a98	yes	Gultekin09	0	10	15800	2712	1765
M8	Barausse12	a98	yes	Gultekin09	100	10	180	35	24
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530	217	177
M10	Barausse12	aO	yes	Gultekin09	10	10	1520	188	188
M11	Gair10	aO	no	Gultekin09	100	10	13	1	1
M12	Barausse12	a98	no	Gultekin09	0	10	20000	4219	2279

Babak, ..., CPLB et al. arXiv:1703.09722

Cosmological parameter measurements from **dark siren** analysis

Initially suggested in MacLeod & Hogan arXiv:0712.0618

 $\Lambda CDM, 4yr$

Laghi et al. arXiv:2102.01708

Machine learning

Two levels of emulation:

parameters 2. Population

1. Signal SNRs to learn detection threshold as a function of source

detection probability as a function of population

DOI:10.5281/zenodo.

hyperparameters

poplar code

7573034

Setting	SNR MLP	$\alpha(\lambda)$ MLP
Number of (hidden) layers	10	8
Neurons per layer	128	128
Activation function	SiLU	SiLU
Rescaling	Unit normal	Unit normal
Optimiser	Adam	Adam
Learning rate	5×10^{-4}	5×10^{-4}
Batch size	104	10 ⁵
Max epochs	105	10 ³
Loss function	L1	L1

Chapman-Bird, CPLB & Woan arXiv:2212.06166

Astrophysical distribution

BGP = binned Gaussian process

FM = flexible mixtures Gaussian kernels

PS = power-law plus spline

PP = power-law plus (Gaussian) peak

LVK arXiv:2111.03634