Probing the regularization of spacetime singularities

Vania Vellucci Gravity shape Pisa, 25 Oct. 2024

Black Hole singularities

Gravitational collapse

- But singularities are considered the demise of General Relativity! A singular space-time is **geodesic incomplete**:
- there exist at least one geodesic that cannot be extended beyond a finite proper time or affine parameter (particles seem to disappear from existence!)

In a complete theory of (**quantum) gravity** we expect the formation of **spacetime singularities to be prevented.**

- There are basically two possible **alternatives to singular black holes** to describe the ultra-compact objects that we see in the sky
	-

Black holes Mimickers

The **expansion** θ of a congruence of geodesics tells you how much **a cloud of particles expands or contracts isotropically** as it moves along the congruence.

When both the expansion of null **ingoing** θ_{-} and outgoing θ_{+} geodesics become negative, a **trapped surface (a horizon) is formed**!

From the **Penrose Theorem** if **Einstein equations** holds, a **non-compact Cauchy surface** is present and the **Null Energy condition** is respected, when a **trapped surface (a horizon)** is formed there is no way to escape the formation of a **singular focusing point**

 θ_{+} < 0 in some points

5

GR + NEC + non-compact Cauchy surface

 $\theta_+ \rightarrow -\infty$ **Singular focusing point!**

> Then we can classify the possible effective regular geometry on the basis of what is happening to the ingoing expansion θ at the defocusing point!

 \mathscr{B}^2

 \mathscr{S}^2

 $GR + NEC \neq$ non-compact **C**auchy surface

 $\theta_+ = 0$ **Defocusing point** at which the outgoing expansion changes sign again

 \mathscr{S}^2

Penrose Theorem Violation of the Penrose Theorem

 θ_{+} < 0 in some points

Beyond the Penrose Theorem

There are basically two possible alternatives to singular black holes to describe the ultra-compact objects that we see in the sky

Black holes Mimickers

*we are considering spherical symmetric objects

7

Two families of (spherically symmetric) Black holes Mimickers

$$
ds^{2} = -e^{-2\phi(r)}f(r) dt^{2} + \frac{dr^{2}}{f(r)}
$$

From Multiple horizons to
Exotic stars (varying ℓ)

$$
\phi(r) = 0
$$

and

$$
m(r) = M \frac{r^3}{r^3 + 2M \ell^2}
$$
 (Hayward metric)
or

$$
m(r) = M \frac{r^3}{(r^2 + \ell^2)^{3/2}}
$$
 (Bardeen metric)
or...

From Hidden wormholes to traversable Wormholes (varying ℓ)

$$
\phi(r) = \frac{1}{2} \log \left(1 - \frac{\ell^2}{r^2} \right)
$$

and

$$
m(r) = M \left(1 - \frac{\ell^2}{r^2} \right) + \frac{\ell^2}{2r}
$$
 (Simpson-Visser)

both can **interpolate between regular black holes and horizonless compact objects***

*Carballo-Rubio et al. 2023

$$
+ r2 \left(d\theta2 + \sin2 \theta d\varphi2 \right), \quad f(r) = 1 - \frac{2m(r)}{r}.
$$

The effect of the regularization on the ringdown signal

E. Franzin, S. Liberati, V. Vellucci, 2023

The ringdown signal

The ringdown is caused by the characteristic oscillations of the final **peturbed** object

Final stable metric + a linear perturbation $ψ$

It can be modelled as a series of damped sinusoid at certain characteristic frequencies: the **quasi normal modes**

$$
\frac{d^2\psi(r)}{dr_*^2} + (\omega^2 - V(r))\psi(r) = 0
$$

LIGO / Redesign: Daniela Leitner

With
\n
$$
S = \int d^4x \sqrt{-g} \left(\frac{1}{16\pi} R - \frac{1}{4\pi} \mathcal{L}(F) \right), \qquad F = \frac{1}{4} F^{\mu\nu} F_{\mu\nu} = \frac{\ell^2}{2 r^4}
$$
\nand

$$
\mathcal{L}(F) = \frac{m r(r)}{r^2} \neq F
$$

Important issue: **axial gravitational perturbations are actually coupled with polar perturbations of the magnetic field!**

- We obtain the equations of motion for spin s fields assuming that the they do not change the stress-energy tensor (at least) to first order
	- No need to interpret the effective stress-energy tensor as some form of matter

We interpret the model as a solution of GR + nonlinear electrodynamics:

$$
ds^{2} = -e^{-2\phi(r)}f(r) dt^{2} + \frac{dr^{2}}{f(r)} + i
$$

Study of gravitational perturbations

Study of test field perturbations

 $r^2\left(\mathrm{d}\theta^2+\sin^2\theta\,\mathrm{d}\varphi^2\right), \quad f(r)=1-\frac{2m(r)}{r}$

Detectability

$$
\omega_i := Re \left[\omega_i \right] = \frac{1}{M_i} \omega_{Kerr}^{(0)} \left(1 + \gamma_i \delta \omega^{(0)} \right)
$$

$$
\tau_i := \frac{1}{Im[\omega_i]} = M_i \tau_{Kerr}^{(0)} \left(1 + \gamma_i \delta \tau^{(0)} \right)
$$

-
-
-

Parspec framework* at order 0 in the spin ² (1 ⁺ / ²) **A data analysis framework for the GW ringdown of BHs in**

modified theories of gravity • We simulate N observations of ringdown signals from regular BHs binary merger

> • Isolating the dependence of the corrections on the masses of the sources we can combine different observations to obtain more precise results on $\delta \omega$ and $\delta \tau$

> • Through a Monte Carlo Markov chain we obtain the posterior probability distribution for $\delta \omega$ and $\delta \tau$

*Maselli et al. 2019

From the observations of the ringdown of **0(100) RBHs** with **SNR**~ we can exclude the GR hypothesis at **90% confidence** level **for macroscopic values of** ℓ/M (0(10⁻¹)

but remember this is at **order 0 in the spin**…

Echoes and the effect of breakreaction

E. Franzin, S. Liberati, V. Vellucci, 2022

At linear level the field equation is:

$$
\left[-\frac{\partial^2}{\partial t^2}+\frac{\partial^2}{\partial r_*^2}-V_l(r)\right]\Psi_{lm}(t,r)=0
$$

But the potential is very different in the two cases

We see echoes (smaller copies) of the original signal

Echoes

E. Maggio, P. Pani, G. Raposo, 2021

Defining the compactness parameter as:

$$
\sigma = \frac{r_0}{2M} - 1
$$
\n
$$
\downarrow
$$
\n
$$
r_{peak} \sim 3M
$$
\n
$$
\int_{r_0 = 2M(\sigma+1)} \frac{dr}{1 - \frac{2M}{r}} \approx 2M(1 - 2\sigma - 2\ln(2\sigma))
$$

The logarithmic dependence on σ would allow to detect even Planckian corrections ($\sigma \sim l_{Planck}/M$) at the horizon scale

16

Time delay

 $\Delta t_{echo} = 2$ $r_0 = 2M(\sigma+1)$ $r_{peak}{\sim}$ 3 M $g_{rr}dr = 2$

Non linear interactions should be taken into account

Limits of linear approximation

Peeling of outgoing geodesic

The accumulation of geodesics around the gravitational radius produces high densities

Instability Lightring and Ergoregion instability! They can be quenced if **absorption** is taken into account

Instability

For high compact object very small AM causes big changes in the compactness!

We lose the main feature of echoes signal: the periodicity!

Absorption beyond the test field limit

Probing the core?

Until now we have assumed that perturbations are reflected at the surface or completly lost inside the object, it is instead physically reasonable to **allow for GWs to travel through the object**, and consequently to carry out information about its internal structure

J. Arrechea, S. Liberati, V. Vellucci, 2024

Semiclassical stars

$$
G^{\mu}_{\ \nu} = 8\pi \left(T^{\mu}_{\ \nu} \right) + M_{\text{P}}^{2} \left(\hat{T}^{\mu}_{\ \nu} \right) \right),
$$

constant-density
perfect fluid
vacuum

$$
ds^2 = -f(r)dt^2 + q(r)dr^2 + r^2d\Omega^2,
$$

$f=1-\frac{2M}{r}+\frac{M_{\rm P}^2M^2}{90\pi r^4}+O\left(\frac{M_{\rm P}^2M^3}{r^5}\right),$ $q = \left[1 - \frac{2M}{r} - \frac{M_{\rm P}^2 M^2}{6 \pi r^4} + O\left(\frac{M_{\rm P}^2 M^3}{r^5}\right)\right]^{-1} \, .$

According to the sign of q_2 and f_2 we have De Sitter, Anti De Sitter or mixed center!

≈Schwarzschild exterior Regular interior that depends on the choice of the density and the compactness $q = 1 + q_2r^2 + O(r^3), \quad f = f_0 + f_2r^2 + O(r^3)$

We can study the dependence of the ringdown on the internal structure of the star!

Extremely delayed echoes

$\Delta t_{\rm echo} \approx 2M - 4M\sigma - 4M\ln(2\sigma) + (t_{\rm int})$

It depends also on M/M_{planck} (no scale invariance!)

We have observable time delays (order of seconds) only for objects with masses of order \sim 10⁻¹⁷ - 10⁻¹⁵ $M_{\odot}!$

See also Zimmerman et al. 2023

We are able to connect possible unknown (quantum) physics to phenomenology and to potentially observable effects in the GWs signal!

Conclusions

If this new physics is "quantum" in the sense of $\ell \sim l_{\it{black}}$ we have **too small corrections** in the ringdown signal and **probably too delayed echoes**

So, can we probe the new physics responsible for singularity regularizations?

• $l \neq l_{planck}$? • Small (primordial) regular objects? • Models with a shorter interior light crossing time? • Partial reflection of GWs at the surface of ECOs? • Searches for individual echoes?

-
-

• But also noise, systematics, enviroment, backreaction effects...

Luckily physics is complicated!

Thank You!

Back up slides

Horizonless compact object branch

Boundary conditions: regular at the center, purely outgoing at infinity

Small $Im[\omega] \rightarrow$ **long living modes** connected with the presence of a **stable lightring!**

$$
e^{i\omega t} = e^{iRe[\omega]t} e^{-Im[\omega]t}
$$

$$
\tau = \frac{1}{Im[\omega]}
$$
 is the damping time

Lightring (and Aretakis) instabilities

The perturbation accumulates near the minimum of the potential causing possible non-linear instabilities

The "stable lightring" is already present in the extremal RBH case! Connection to the Aretakis Instability?

Expansion at constant compactness

Transient phase $\tau \sim 65 M_0 > \Delta t_{echo}$

very good question…

Partial absorption of the first echo $M_0 \rightarrow M = M_0 + \Delta E$

For high compact object very small ΔM **causes big changes in the compactness!**

$$
W_0 \rightarrow W = W_0 + \Delta E_{1st \,ehco}
$$
\n
$$
\Delta t_{2nd \,echo} > \Delta t_{1st \,echo}
$$

For example, if $\Delta M = (5 \cdot 10^{-8}) M_0$:

$$
\sigma_0 = \frac{r_0}{2M_0} - 1 = \frac{2 M_0 (1 + 10^{-7})}{2 M_0} - 1 = 10^{-7}
$$

$$
\sigma_f = \frac{r_0}{2M_f} - 1 = \frac{2 M_0 (1 + 10^{-7})}{2 M_0 (1 + 5 \cdot 10^{-8})} - 1 = 5 \cdot 10^{-8}
$$

$$
\Delta t_0 \sim -4 \ln(2 \sigma_0) = 61.7 M_0
$$

$$
\Delta t_f \sim -4 \ln(2 \sigma_f) = 64.5 M_0
$$

- **regular BHs** and **horizonless compact objects**
- compact objects
- the next Generation of GW detectors stacking multiple events
- can drastically affect the signal and our cability to detect it!

• One simple effective metric can interpolate between spherically symmetric

• We found that the **quasi-normal modes** of these objects **deviates** from the Schwarschild ones showing that we can potentially probe the inner structure of

• **Echoes** could be a powerful probe of new physics but **non-linear effects** and **propagation within the object's interior** should be taken into account, as they

• These deviations from the spectrum of singular BHs seems to be **detectable** with