

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

Francesco Crescimbeni

Sapienza University of Rome & INFN Rome 1

GRASP 2024, Pisa

Based on:

F. Crescimbeni, G. Franciolini, P. Pani, A. Riotto, arxiv.org/2402.18656 & F. Crescimbeni, G. Franciolini, P. Pani, M. Vaglio, arxiv.org/2408.14287

<mark>nbeni</mark> NFN Rome 1

Subsolar compact objects still missing

> The detection of subsolar compact objects could imply smoking gun evidence evidence of new physics such as primordial black holes (PBHs).

www.ligo.caltech.edu/MIT/image/ligo20211107a

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

Subsolar compact objects from GW observations still not comfidently detected!

Putative detections of subsolar objects

Candidate neutron star object identyfied as HESS J1731–347 observed with mass $0.77^{+0.20}_{-0.17} M_{\odot}$ [Doroshenko+, Nature Astronomy 6, 1444 (2022)].

Subsolar mergers (SSM) searches have been performed thought the years, finding no conclusive evidences [LVK,'18; LVK '19; LVK '22; Nitz-Wang, 2102.00868].

SSM-like trigger (denoted as SSM200308) detected during O3 was recently reanalyzed [Prunier+, 2311.16085] under the assumption that it was a binary of PBHs.

Prunier+, 2311.16085

Objectives and questions

What are possible SSM candidates?

How can we model the GW signal of a SSM merger?

Given an observing run, can we distinguish PBHs from other candidates in the SSM range?

What are cosmology and nuclear physics implications of an SSM detection?

SSM phenomenology

SSM candidates and how they are deformed

• Astrophysics objects: Light neutron stars, white dwarfs, strange quark matter stars;

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

$$\Lambda = \frac{2}{3}k_2 \left(\frac{Gm}{R}\right)^{-5}$$

Non-zero tidal deformabilities

$$\Lambda = 0$$

Non-deformable (symmetry properties)

> We will observe only the inspiral part of the signal, described by the TaylorF2 waveform [Damour+, 0010009].

> We will observe only the inspiral part of the signal, described by the TaylorF2 waveform [Damour+, 0010009].

SAPIENZA

Waveform modeling of SSM binaries

> We will observe only the inspiral part of the signal, described by the TaylorF2 waveform [Damour+, 0010009].

$$\psi(x)$$

$$\delta\psi_{\rm tidal} = \frac{3}{128\eta x^{5/2}} \left[\left(-\frac{39}{2}\tilde{\Lambda} \right) x^5 + \left(-\frac{311}{64} \right) \left(-\frac{311}{64} \right) \right] \left(-\frac{311}{64} \right) \left(-\frac{311}{64} \right$$

Distinguishing between subsolar PBHs and other candidades

PBH binary injections: O3

- Bayesian inference analysis performed with Bilby [Ashton+, 1811.02042]
- PBH binary injections + recovery
- \succ Inject SSM200308 parameters [Prunier+, 2311.16085] + zero tides and negligible tapering
- O3 sensitivity

FC-Franciolini-Pani-Riotto, 2402.18656

PBH binary injections: ET+2CE

- Bayesian inference analysis performed with Bilby [Ashton+, 1811.02042]
- PBH binary injections + recovery
- \succ Inject SSM200308 parameters [Prunier+, 2311.16085] + zero tides and negligible tapering
- ET+2CE sensitivity

FC-Franciolini-Pani-Riotto, 2402.18656

Exploring the Fisher parameter space: the NS binary case

- Fisher analysis performed with gwfast [lacovelli-Mancarella-Foffa-Maggiore, 2207.06910].
- Explore the masses parameter space where they vary in the range $m_1, m_2 \in [0.1; 1]$.

Cosmology and nuclear physics implications of an SSM detection

Cosmology implications of a SSM detection

If an SSM PBH binary is detected:

infer the corresponding PBH abundance (controls the merger rate of SSM objects)

$$f_{\rm PBH} \equiv \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}}$$

 10^{-5}

 $f_{\rm PBH}$

> need at least $f_{PBH} \gtrsim O(10^{-2})$ to explain such a SSM event (upper bounds on GWTC-3).

[Franciolini-Pani-Musco-Urbano, 2209.05959]

Nuclear physics implications of a SSM detection

If the SSM objects are identified as light NSs/SQM stars:

- Large tidals can be exploited to constrain the NS EoS.
- \succ (m, Λ) can be translated in (m,R) diagram.

Take-home messages and future works

Take-home messages:

Effective tidal can help distinguishing between SSM candidates.

Important consequences in cosmology and nuclear physics implications.

Future developments:

Merger rate of subsolar BHs: how this will affect population studies?

Thank you for your attention!

Back-up slides

Strange quark-matter models assumes a balance of up, ulletdown, and strange quarks.

EoS is obtained using perturbative QCD and an MIT-type ulletbag model in which quarks are confined within a "bag" and interact via the strong force.

This model often leads to a softer EoS compared to ${\color{black}\bullet}$ traditional neutron star matter because the pressure increase with density may be less steep.

Tidal deformabilities for neutron stars

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

Subsolar objects are less sensitive for EOS effects!

Assume for instance boson stars (BSs) with quartic potential [Pacilio+, 2007.05264]:

$$V\left(\left| \phi \right| \right) = \frac{\mu^2}{2} \left| \phi \right|^2 +$$

$$\frac{m}{m_B} = \frac{\sqrt{2}}{8\sqrt{\pi}} \left[-0.828 + \frac{20.99}{\log\Lambda} - \frac{99.1}{\left(\log\Lambda\right)^2} + \frac{149.7}{\left(\log\Lambda\right)^3} \right]$$

Invert relation to find:

 $\Lambda = \Lambda(m/m_B)$

- In this model, BSs exist for $m/m_B < 0.06$, which gives $\Lambda > 289$.
- Λ can span many orders of magnitude as the mass deviates from its maximum value (e.g., $\Lambda \approx 1.7 \times 10^6$ for $m/m_{B} = 0.02$).
- An upper bound on Λ can rule out some models!

 $\frac{\lambda}{4} |\phi|^4$

Binary maximum frequency of material compact objects

A GW signal has a maximum frequency of the order of ISCO:

$$f_{\rm ISCO} = \frac{c^3}{(6^{3/2}\pi GM)} =$$

binaries of stellar objects are typically characterized by smaller maximal frequencies (hard surface, tidal disruption,...)

$$r_{T,i} = \left(\frac{2m_j}{m_i}\right)^{1/3} r_i \qquad \Longrightarrow \quad f_T = \frac{1}{\pi} \sqrt{\frac{GM}{(\max[r_{T,1}, r_{T,2}])^3}}$$

$$4.4 \,\mathrm{kHz}\left(\frac{M_{\odot}}{M}\right)$$

Binary maximum frequency of material compact objects

• White dwafts:

• Neutron stars:

$$f_{\rm max}^{\rm NS} \approx 1.4\,{\rm kHz} \left(\frac{m_{\rm NS}}{0.5M_\odot}\right)^{1/2} \left(\frac{15\,{\rm km}}{r_{\rm NS}}\right)^{3/2} \qquad \begin{array}{c} {\rm More\ accurate\ expression} \end{array}$$

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

$$\begin{split} f_{\rm RO}/{\rm Hz} &= -26.9 - 35.5 \left(\frac{m_1}{M_{\odot}}\right) - 3.02 \left(\frac{m_1}{M_{\odot}}\right)^2 \\ &+ 1690 \left(\frac{m_2}{M_{\odot}}\right) - 575 \left(\frac{m_2}{M_{\odot}}\right)^2 \end{split}$$

[Bandopadhyay+, 2212.03855]

Waveform modeling of SSM objects

GW phase (augmented at 5PN and 6PN) [Kidder-Will, 9211025; Wade+, 1402.5156]: \bullet

Some definitions...

$$\begin{split} \tilde{\Lambda} &= \frac{8}{13} \left[\left(1 + 7\eta - 31\eta^2 \right) \left(\Lambda_1 + \Lambda_2 \right) + \sqrt{1 - 4\eta} \left(1 + 9\eta - 11\eta^2 \right) \left(\Lambda_1 - \Lambda_2 \right) \right] \\ \delta \tilde{\Lambda} &= \frac{1}{2} \left[\sqrt{1 - 4\eta} \left(1 - \frac{13272}{1319} \eta + \frac{8944}{1319} \eta^2 \right) \left(\Lambda_1 + \Lambda_2 \right) + \left(1 - \frac{15910}{1319} \eta + \frac{32850}{1319} \eta^2 + \frac{3380}{1319} \eta^3 \right) \left(\Lambda_1 - \Lambda_2 \right) \right] \end{split}$$

Bayesian inference vs Fisher for BPBHs: O3

SAPIENZA UNIVERSITÀ DI ROMA

INFN

Network	LVK O3	LVK O4	LVK O5	ET+2CE		
BPBH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)						
SNR 8.76 14.6 24.8 430						
$\Delta m_1/m_1$	0.21	0.14	0.053	$6.4 \cdot 10^{-3}$		
$\Delta m_2/m_2$	0.18	0.12	0.046	$5.5 \cdot 10^{-3}$		
$\Delta ilde{\Lambda}$	$1.9\cdot 10^4$	$1.3\cdot 10^4$	$7.8\cdot 10^3$	$7.7 \cdot 10^2$		
Example of exclusion of BS model						
$= m_2 = 0.62 M_{\odot}$ $\tilde{\Lambda} > 3 \cdot 10^4$ $m_B \gtrsim 15 M_{\odot}$						

Bayesian inference vs Fisher for BPBHs : O4

SAPIENZA UNIVERSITÀ DI ROMA

	LVK O3	LVK O4	LVK O5	ET+2CE		
BH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)						
	8.76	14.6	24.8	430		
	0.21	0.14	0.053	$6.4 \cdot 10^{-3}$		
	0.18	0.12	0.046	$5.5 \cdot 10^{-3}$		
	$1.9\cdot 10^4$	$1.3 \cdot 10^4$	$7.8 \cdot 10^3$	$7.7\cdot 10^2$		

Bayesian inference vs Fisher for BPBHs: O5

	LVK O3	LVK O4	LVK O5	ET+2CE			
H SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)							
	8.76	14.6	24.8	430			
	0.21	0.14	0.053	$6.4 \cdot 10^{-3}$			
	0.18	0.12	0.046	$5.5\cdot10^{-3}$			
	$1.9\cdot 10^4$	$1.3 \cdot 10^4$	$7.8 \cdot 10^3$	$7.7\cdot 10^2$			

Bayesian inference vs Fisher for BPBHs: ET+2CE

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

SAPIENZA UNIVERSITÀ DI ROMA

	LVK O3	LVK O4	LVK O5	ET+2CE		
PBH SSM200308 ($\tilde{\Lambda} = \delta \tilde{\Lambda} = 0, \tilde{\lambda}_f = 1$)						
	8.76	14.6	24.8	430		
	0.21	0.14	0.053	$6.4\cdot10^{-3}$		
	0.18	0.12	0.046	$5.5\cdot 10^{-3}$		
	$1.9\cdot 10^4$	$1.3\cdot 10^4$	$7.8\cdot 10^3$	$7.7\cdot 10^2$		

Fisher results of NS binary injections

Network	LVK O3	LVK O4	LVK O5	ET+2CE			
BNS SSM200308 ($\tilde{\Lambda} = 1.5 \cdot 10^5, \delta \tilde{\Lambda} = 4.9 \cdot 10^4, \tilde{\lambda}_f = 0.075$)							
SNR	7.90	12.8	22.4	398			
$\Delta m_1/m_1$	0.47	0.22	0.082	0.0017			
$\Delta m_2/m_2$	0.39	0.19	0.070	0.0015			
$\Delta ilde{\Lambda}/ ilde{\Lambda}$	0.86	0.66	0.55	0.047			
$\Delta \tilde{\lambda}_f / \tilde{\lambda}_f$	0.38	0.24	0.13	0.015			

$$\tilde{\lambda}_f + 3\Delta \tilde{\lambda}_f < 1$$

Results:

- \bullet detectors;
- tidal disruption is well constrained from O3 on. \bullet

we can be certain that the binary is subsolar from O5 on; tidal deformability distiguishes PBHs from BNSs only with 3G

Exploring the Fisher parameter space: the PBH binary case

Exploring the Fisher parameter space: constraints on BSs with large quartic interaction

APIENZA

Do we exclude BPBHs if $\Lambda=0$?

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

Having $\Lambda=0$ may not exclude PBHs at all.

If a PBH presents an astrophysical environment, tidal deformabilities will be different from zero.

$$k_2 = -\frac{\epsilon}{5} \left(\frac{L}{r_s}\right)^6$$

Distinguish between BPBHs with environment and 'naked' PBHs [De Luca, Franciolini, Riotto, 2408.14207].

Source ref. lacovelli+, 2304.03160

Model	BH1	BH2	Agnostic	NS1	NS2	BS
$m_1[M_\odot]$	$0.65^{+0.17}_{-0.15}$	$0.72^{+0.20}_{-0.17}$	$0.57\substack{+0.13 \\ -0.10}$	$0.59\substack{+0.29 \\ -0.08}$	$0.82^{+0.20}_{-0.14}$	$0.50\substack{+0.10 \\ -0.07}$
$m_2[M_\odot]$	$0.26^{+0.07}_{-0.04}$	$0.23\substack{+0.06 \\ -0.04}$	$0.29\substack{+0.05\\-0.05}$	$0.27\substack{+0.03 \\ -0.08}$	$0.21\substack{+0.03 \\ -0.03}$	$0.32\substack{+0.05\\-0.05}$
$\chi_{ m eff}$	$0.41^{+0.05}_{-0.04}$	$0.41\substack{+0.22 \\ -0.05}$	$-0.13\substack{+0.08\\-0.09}$	$0.15\substack{+0.16 \\ -0.43}$	$0.72^{+0.07}_{-0.26}$	$0.36\substack{+0.25\\-0.21}$
$\chi_{ m p}$	$0.45^{+0.26}_{-0.26}$	-	-	-	-	-
$d_L[{ m Mpc}]$	80^{+37}_{-29}	83^{+41}_{-33}	97^{+45}_{-41}	110^{+139}_{-50}	76^{+37}_{-28}	106^{+84}_{-45}
$\Lambda_1/10^5$	-	-	-4^{+15}_{-10}	5^{+28}_{-3}	6^{+8}_{-5}	-
$\Lambda_2/10^7$	-	-	3^{+23}_{-12}	$1.3^{+0.6}_{-0.8}$	$0.3\substack{+0.3 \\ -0.3}$	-
$\kappa_1/10^3$	-	-	15^{+347}_{-351}	-	-	-
$\kappa_2/10^3$	-	-	-287^{+114}_{-120}	-	-	-
$\log_{10} \tilde{\lambda}_f$	-	-	$-1.01\substack{+0.65\\-0.42}$	-	-	-
$M_B[M_{\odot}]$	-	-	-	-	-	10^{+2}_{-2}
$\log_{10} \mathcal{B}$	_	0.31	-1.64	-2.68	0.22	-2.26

Nuclear physics implications of a SSM detection

 \leq

If the SSM objects are identified as light NSs/SQM stars:

Large tidals can be exploited to constrain the NS EoS.

Bayesian inference analysis performed by injecting/recovering models A and B, where:

A, B $\in [APR, WFF1, SQM3]$

Compare the hypotheses A and B with Bayes factors.

$$\mathcal{B}_A^B = \frac{Z_B}{Z_A}$$

Detectors	$m_1[M_\odot]$	${ t APR} o$ SQM3	$ ext{SQM3} ightarrow ext{APR}$	$rac{ extsf{WFF1}}{ extsf{SQM3}}$	$ ext{SQM3} ightarrow ext{WFF1}$
04, SNR = 25	0.63	-1.9	-3.8	0.1	-0.4
	0.27	-10.2	-19.9	-2.7	-5.0
05, SNR = 44	0.63	-7.0	-12.3	-0.2	-1.0
	0.27	-37.5	-88.8	-11.3	-25.1

FC-Franciolini-Pani-Vaglio, 2408.14287