Francesco Crescimbeni

Sapienza University of Rome & INFN Rome 1

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

Based on:

F. Crescimbeni, G. Franciolini, P. Pani, A. Riotto, [arxiv.org/2402.18656](https://arxiv.org/pdf/2402.18656) & F. Crescimbeni, G. Franciolini, P. Pani, M. Vaglio, [arxiv.org/2408.14287](https://arxiv.org/pdf/2408.14287)

GRASP 2024, Pisa

Subsolar compact objects still missing

www.ligo.caltech.edu/MIT/image/ligo20211107a

Subsolar compact objects from GW observations still not comfidently detected!

 \triangleright The detection of subsolar compact objects could imply smoking gun evidence evidence of new physics such as primordial black holes (PBHs).

Putative detections of subsolar objects

➢ Candidate neutron star object identyfied as HESS J1731–347 observed with mass $0.77^{+0.20}_{-0.17} M_{\odot}$ [Doroshenko+, Nature Astronomy 6, 1444 (2022)].

Subsolar mergers (SSM) searches have been performed thought the years, finding no conclusive evidences [LVK,'18; LVK '19; LVK '22; Nitz-Wang, 2102.00868].

➢ SSM-like trigger (denoted as SSM200308) detected during O3 was recently reanalyzed [Prunier+, 2311.16085] under the assumption that it was a binary of PBHs.

Prunier+, 2311.16085

Objectives and questions

➢ What are possible SSM candidates?

➢ How can we model the GW signal of a SSM merger?

➢ Given an observing run, can we distinguish PBHs from other candidates in the SSM range?

➢ What are cosmology and nuclear physics implications of an SSM detection?

SSM phenomenology

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

$$
\Lambda = \frac{2}{3} k_2 \left(\frac{Gm}{R}\right)^{-5}
$$

SSM candidates and how they are deformed

• Astrophysics objects: Light neutron stars, white dwarfs, strange quark matter stars;

Non-zero tidal deformabilities

$$
\Lambda = 0
$$
\nNon-deformable (symmetry properties)

➢ We will observe only the inspiral part of the signal, described by the TaylorF2 waveform [Damour+, 0010009].

Waveform modeling of SSM binaries

➢ We will observe only the inspiral part of the signal, described by the TaylorF2 waveform [Damour+, 0010009].

 1.0 Tapering smoothing: keeps into account possible tidal 0.8 disruption 0.6 $\tilde{h}(f) = \mathcal{A}f^{-\frac{7}{6}}\mathcal{S}(f)e^{i\psi(f)}$ ∞ 0.4 0.2 0.0 $\mathcal{S}(f) = \left[\frac{1 + e^{-\tilde{\lambda}_f/\delta \tilde{\lambda}_f}}{1 + e^{(f/f_{\text{ISCO}} - \tilde{\lambda}_f)/\delta \tilde{\lambda}_f}}\right]$

Source ref. De Luca+, 2212.03343

Waveform modeling of SSM binaries

➢ We will observe only the inspiral part of the signal, described by the TaylorF2 waveform [Damour+, 0010009].

$$
\delta\psi_{\rm tidal}=\frac{3}{128\eta x^{5/2}}\left[\left(-\frac{39}{2}\tilde{\Lambda}\right)x^{5}+\left(-\frac{311}{64}\right)\right]
$$

Distinguishing between subsolar PBHs and other candidades

PBH binary injections: O3

- ➢ Bayesian inference analysis performed with Bilby [Ashton+, 1811.02042]
- \triangleright PBH binary injections + recovery
- ➢ Inject SSM200308 parameters [Prunier+, 2311.16085] + zero tides and negligible tapering
- ➢ O3 sensitivity

FC-Franciolini-Pani-Riotto, 2402.18656

PBH binary injections: ET+2CE

- ➢ Bayesian inference analysis performed with Bilby [Ashton+, 1811.02042]
- \triangleright PBH binary injections + recovery
- ➢ Inject SSM200308 parameters [Prunier+, 2311.16085] + zero tides and negligible tapering
- \triangleright ET+2CE sensitivity

FC-Franciolini-Pani-Riotto, 2402.18656

Exploring the Fisher parameter space: the NS binary case

- ➢ Fisher analysis performed with gwfast [Iacovelli-Mancarella-Foffa-Maggiore, 2207.06910].
- \triangleright Explore the masses parameter space where they vary in the range m_1 , $m_2 \in [0.1; 1]$.

APIENZA

Cosmology and nuclear physics implications of an SSM detection

Cosmology implications of a SSM detection

If an SSM PBH binary is detected:

➢ infer the corresponding PBH abundance (controls the merger rate of SSM objects)

$$
f_{\rm PBH} \equiv \frac{\Omega_{\rm PBH}}{\Omega_{\rm DM}}
$$

 10^{-5}

 $f_{\rm{PBH}}$

➢ need at least *fPBH* ≳ O(10−2) to explain such a SSM event (upper bounds on GWTC-3).

[Franciolini-Pani-Musco-Urbano, 2209.05959]

Nuclear physics implications of a SSM detection

If the SSM objects are identified as light NSs/SQM stars:

- ➢ Large tidals can be exploited to constrain the NS EoS.
- ➢ (m,Λ) can be translated in (m,R) diagram.

Take-home messages and future works

Take-home messages:

Effective tidal can help distinguishing between SSM candidates.

Important consequences in cosmology and nuclear physics implications.

Future developments:

Merger rate of subsolar BHs: how this will affect population studies?

Thank you for your attention!

Back-up slides

• Strange quark-matter models assumes a balance of up, down, and strange quarks.

• EoS is obtained using perturbative QCD and an MIT-type bag model in which quarks are confined within a "bag" and interact via the strong force.

• This model often leads to a softer EoS compared to traditional neutron star matter because the pressure increase with density may be less steep.

Tidal deformabilities for neutron stars

Sapienza

²¹ **Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events**

Subsolar objects are less sensitive for EOS effects!

• Assume for instance boson stars (BSs) with quartic potential [Pacilio+, 2007.05264]:

$$
V\left(\left\vert \phi\right\vert \right) =\tfrac{\mu^{2}}{2}\left\vert \phi\right\vert ^{2}+
$$

$$
\frac{m}{m_B} = \frac{\sqrt{2}}{8\sqrt{\pi}} \left[-0.828 + \frac{20.99}{\log \Lambda} - \frac{99.1}{(\log \Lambda)^2} + \frac{149.7}{(\log \Lambda)^3} \right]
$$

• Invert relation to find:

 $\Lambda = \Lambda(m/m_B)$

- In this model, BSs exist for $m/m_B < 0.06$, which gives $\Lambda > 289$.
- Λ can span many orders of magnitude as the mass deviates from its maximum value (e.g., Λ ≈ 1*.*7×10 6 for $m/m_B = 0.02$).
- An upper bound on Λ can rule out some models!

 $\frac{\lambda}{4}$ | ϕ |⁴

Binary maximum frequency of material compact objects

• A GW signal has a maximum frequency of the order of ISCO:

$$
f_{\rm ISCO} = \frac{c^3}{(6^{3/2}\pi GM)} =
$$

• binaries of stellar objects are typically characterized by smaller maximal frequencies (hard surface, tidal disruption,…)

$$
r_{T,i} = \left(\frac{2m_j}{m_i}\right)^{1/3} r_i \qquad \longrightarrow \qquad f_T = \frac{1}{\pi} \sqrt{\frac{GM}{(\max[r_{T,1}, r_{T,2}])^3}}
$$

$$
4.4\,\text{kHz}\left(\frac{M_\odot}{M}\right)
$$

Binary maximum frequency of material compact objects

White dwafts:

$$
r_{\rm WD} = 0.013 \, r_{\odot} \left(\frac{m_{\rm WD}}{M_{\odot}}\right)^{-1/3} \qquad f_{\rm max}^{\rm WD} = 0.1
$$

Neutron stars:

$$
f_{\text{RO}}/\text{Hz} = -26.9 - 35.5 \left(\frac{m_1}{M_{\odot}}\right) - 3.02 \left(\frac{m_1}{M_{\odot}}\right)^2
$$

 $+1690 \left(\frac{m_2}{M_{\odot}}\right) - 575 \left(\frac{m_2}{M_{\odot}}\right)^2$

More accurate expression

[Bandopadhyay+, 2212.03855]

Waveform modeling of SSM objects

• GW phase (augmented at 5PN and 6PN) [Kidder-Will, 9211025; Wade+, 1402.5156] :

• Some definitions…

$$
\tilde{\Lambda} = \frac{8}{13} \left[\left(1 + 7\eta - 31\eta^2 \right) \left(\Lambda_1 + \Lambda_2 \right) + \sqrt{1 - 4\eta} \left(1 + 9\eta - 11\eta^2 \right) \left(\Lambda_1 - \Lambda_2 \right) \right]
$$
\n
$$
\delta \tilde{\Lambda} = \frac{1}{2} \left[\sqrt{1 - 4\eta} \left(1 - \frac{13272}{1319} \eta + \frac{8944}{1319} \eta^2 \right) \left(\Lambda_1 + \Lambda_2 \right) + \left(1 - \frac{15910}{1319} \eta + \frac{32850}{1319} \eta^2 + \frac{3380}{1319} \eta^3 \right) \left(\Lambda_1 - \Lambda_2 \right) \right]
$$

$$
\psi(x) = \psi_{\rm pp}(x) + \underbrace{\delta \psi_{\rm tidal}(x)}_{\rm Point-particle} \left\{ \frac{3}{\sqrt{2}} \left[\left(-\frac{39}{2} \tilde{\Lambda} \right) x^5 + \left(-\frac{3115}{64} \tilde{\Lambda} + \frac{6595}{364} \sqrt{1-4\eta} \delta \tilde{\Lambda} \right) x^6 \right] \right\}
$$

Bayesian inference vs Fisher for BPBHs: O3

Analysis and physical implications of candidate subsolar gravitational-wave events

Bayesian inference vs Fisher for BPBHs : O4

SAPIENZA

Bayesian inference vs Fisher for BPBHs: O5

Bayesian inference vs Fisher for BPBHs: ET+2CE

Analysis and physical implications of candidate subsolar gravitational-wave events

Fisher results of NS binary injections

$$
\boxed{\tilde{\lambda}_f + 3\Delta \tilde{\lambda}_f\ <\ 1}
$$

Results:

• we can be certain that the binary is subsolar from O5 on; • tidal deformability distiguishes PBHs from BNSs only with 3G

-
- detectors;
- tidal disruption is well constrained from O3 on.

Exploring the Fisher parameter space: the PBH binary case

Exploring the Fisher parameter space: constraints on BSs with large quartic interaction

Do we exclude BPBHs if Λ=0?

• Having Λ=0 may not exclude PBHs at all.

If a PBH presents an astrophysical environment, tidal deformabilities will be different from zero.

$$
k_2=-\frac{\epsilon}{5}\left(\frac{L}{r_s}\right)^6
$$

• Distinguish between BPBHs with environment and 'naked' PBHs [De Luca, Franciolini, Riotto, 2408.14207].

Source ref. Iacovelli+, 2304.03160

SAPIENZA

Nuclear physics implications of a SSM detection

 \prec

If the SSM objects are identified as light NSs/SQM stars:

 \triangleright Large tidals can be exploited to constrain the NS EoS.

➢ Bayesian inference analysis performed by injecting/recovering models A and B, where:

 $A, B \in [APR, WFF1, SQM3]$

➢ Compare the hypotheses A and B with Bayes factors.

$$
\mathcal{B}^B_A=\frac{Z_B}{Z_A}
$$

Can we identify primordial black holes? Analysis and physical implications of candidate subsolar gravitational-wave events

FC-Franciolini-Pani-Vaglio, 2408.14287