Detecting the Stochastic GWs Background with Astrometric angle correlations

Gravity Shape Pisa - 25/10/2024 Massimo Vaglio

The Astrometric deflection

GW
$$
g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} + \mathcal{O}(h^2)
$$
 GW
\nSOWRCE
\n $h_{00} = h_{0i} = 0$, $h_{ij} = A_{ij}e^{ik_{\mu}x^{\mu}}$ $A_i^i = k^j A_{ij} = 0$
\nPlane wave TT-gauge
\n $k^{\mu} = k^t(1, p^i)$ $k^{\mu}k_{\mu} = 0 \implies \delta_{ij}p^ip^j = 1$
\nPropagation direction
\nTetrad basis $e_{(0)} = \partial_t + \mathcal{O}(h^2)$, $e_{(i)} = \partial_i - \frac{1}{2}h_i^k \partial_k + \mathcal{O}(h^2)$
\nPhoton wave vector $\sigma = \nu e_{(0)} + i(n^i)\hat{e}_{(i)}$

ic view of the astrometric effect *Mihaylov et al. 2018*

The Astrometric deflection

Astrometric deflection pattern for plus (red) and cross (blue) polarizations

$$
\chi_1 = a^i \partial_i, \quad \chi_2 = b^i \partial_i, \quad \chi_3 = \frac{\partial}{\partial t} + p^i \partial_i.
$$
 $\vec{a}, \vec{b} \perp \vec{p}$

Killing vector fields

$$
-\sigma \cdot \chi_3 = \nu(e_{(0)} + n^i e_{(i)}) \cdot (e_{(0)} + p) = \nu - \nu n^i (p \cdot e_{(i)}) = \nu (1 - n \cdot p) = \text{const}
$$

$$
\sigma \cdot \chi_1 = \nu(e_{(0)} + n^i e_{(i)}) \cdot a = \nu n^i (a \cdot e_{(i)}) = \nu \left(n \cdot a + \frac{1}{2} h_{ij} n^i a^j \right) = \text{const}
$$

$$
\sigma \cdot \chi_2 = \nu(e_{(0)} + n^i e_{(i)}) \cdot b = \nu n^i (b \cdot e_{(i)}) = \nu \left(n \cdot b + \frac{1}{2} h_{ij} n^i b^j \right) = \text{const}
$$

Astrometric shift

$$
\delta n^i = \frac{n_i + p_i}{2(1 + n \cdot p)} h_{jk} n^j n^k - \frac{1}{2} h_j^i n^j + \mathcal{O}(h^2)
$$

Book and Flanagan 2012

Stochastic GW Background

Astrophysical origin Cosmological origin

Credit NANOGrav

Incoherent superposition of many sources

- Coalescing binaries
- Supernovae
- Fast rotating/newly born NSs

Predicted by many scenarios

- Inflation
- Phase transitions
- Cosmic strings

Faint evidence of a Stochastic Gravitational Wave Background from NANOgrav! *The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background – Agazie et al. 2023*

Stochastic GW Background

The signal is seen as an additional noise!

Response to a SGWB

Similar problems were faced in the discovery of the CMB

«A measurement of excess antenna temperature at 4080 MHz», Penzias and Wilson 1965

Michele maggiore, Gravitational waves vol I

 $\langle s_1(t)s_2(t)\rangle$ Cross-correlations

Instead of matching the output to a given signal, one matches the otputs of different detectors

A quick look at Pulsar Timing Array

 Analogous of antenna pattern functions NANOGrav 2023

Hellings-Downs $H(\xi)$

Astrometric correlations

In the astrometric case the cross correlation is

Analogous of the Hellings-Downs

However, recently *Crosta et al. (Pinpointing gravitational waves via astrometric gravitational wave antennas, SciRep 2024)* proposed a different observable

Gaia mission

Launched by ESA in 2013, Gaia aims to create the most detailed **3D map of the Milky Way**.

Expected to operate until 2025:

- Field of view $\sim 1 deg^2$
- Monitored each target around 70 times
- Measuring positions of about 1 billion stars

Gaia scanning method

Credit: B. Holl (University of Geneva, Switzerland), A. Moitinho & M. Barros (CENTRA – University of Lisbon), on behalf of DPAC, CC BY-SA IGO 3.0, CC BY-SA 3.0 igo,

From absolute to relative angles

From absolute to relative angles

Hellings-Donws analogue geometric factor

 $\mathcal{HDA}(\Theta,\Phi,\gamma)=\frac{\pi}{12(1+\cos\Theta)^2}\left[22+31\cos\Theta+10\cos\left(2\Theta\right)+\cos\left(3\Theta\right)-15\cos\left(2(\gamma-\Theta+\Phi)\right)-15\cos\left(2(\gamma+\Theta+\Phi)\right)+12\cos\left(\Theta-2(\gamma+\Phi)\right)\right]\right]$ + 12 cos $(\Theta + 2(\gamma + \Phi)) + 24 \log \sin \left(\frac{\Theta}{2}\right) + 24 \cos (\gamma - \Phi) \cos (\gamma + \Phi) \sin^2 \Theta + 6 \left(\cos (2(\gamma + \Phi)) \left(9 + 4 (11 - 12 \cos \Theta) \log \sin \left(\frac{\Theta}{2}\right)\right)\right)$ $+4\cos{(\gamma-\Phi)}\cos{(\gamma+\Phi)}\left(\cos{\Theta}+4\log\sin{\left(\frac{\Theta}{2}\right)}\right)\sin^2{\Theta}+2\log\sin{\left(\frac{\Theta}{2}\right)}\left(\cos{\Theta}-\cos{(3\Theta)}-4\cos{(2\Theta)}\sin^2{(\gamma+\Phi)}\right)$

Signal-to-noise ratio

The signal to noise ration can be estimated as

$$
\text{SNR}^2 \simeq 1.5 \,\psi^2 \frac{N^2}{\sigma^4 \Delta t^2} \frac{T}{144\pi^4} \frac{h_{\text{ref}}^4}{f_{\text{ref}}^{4\gamma}} \frac{T^{1-4\gamma}}{1-4\gamma}
$$
\nProportional to ψ^2 !

\nFor a background with

\n
$$
h_c = h_{\text{ref}} \left(\frac{f}{f_{\text{ref}}}\right)^{\gamma} \longrightarrow -2/3
$$
\n
$$
\xrightarrow{\text{for a background with } 3 \times 10^{-8} \text{ Hz}}
$$

And assuming $N \sim 10^9$, $T = 15 \text{ yr}$, $\Delta t = 30 \text{ days}$, $\sigma = 20 \mu as$

 $SNR \sim \psi \times 30$

Conclusions

Astrometric searches for a SGWB might be complementary to PTA observations in the nano-Hz band

Taking relative angles as fundamental observables would reduce the uncertainty in the Gaia satellite W orientation but at the price of having a smaller effect