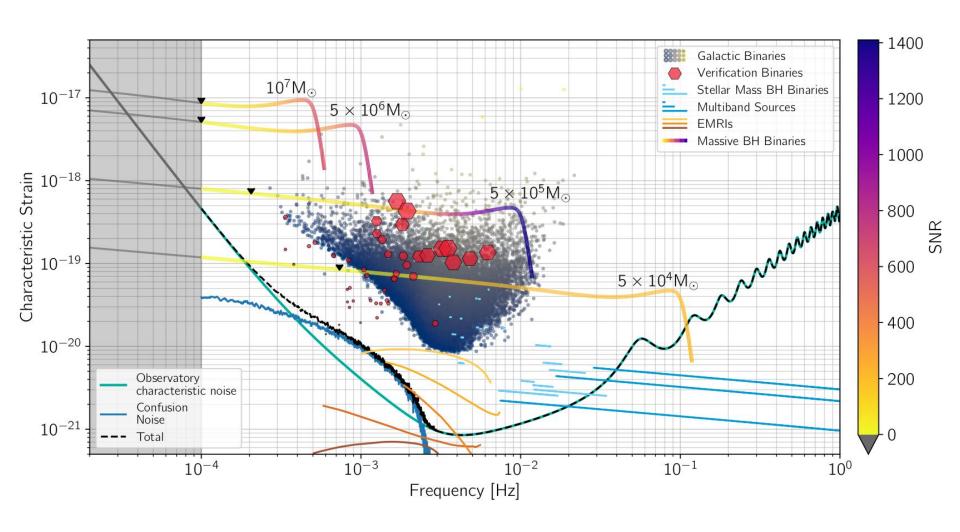
CYCLOSTATIONARY PROCESSES IN LISA

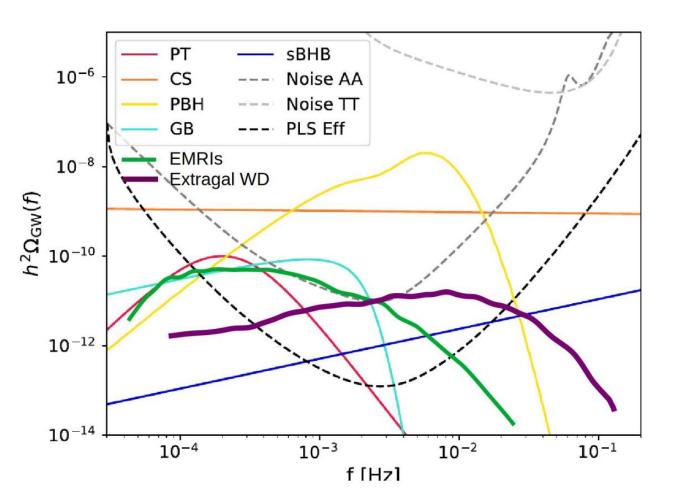
Pozzoli, Buscicchio, et al (2410.08274) Pozzoli, Buscicchio, Klein (in prep)

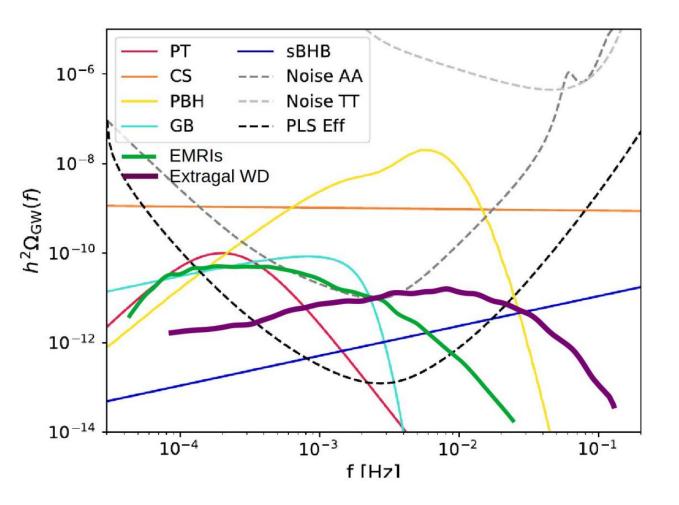
Speaker: Federico Pozzoli

Co-Authors: R. Buscicchio, A. Klein, V. Korol, A. Sesana, F. Haardt

GraSP24, 24/10/24







Cosmo: Caprini+24 Auclair+19

Bartolo+19

Astro:
Nelemans 09
Babak+23
Pozzoli+23
Hofman+24

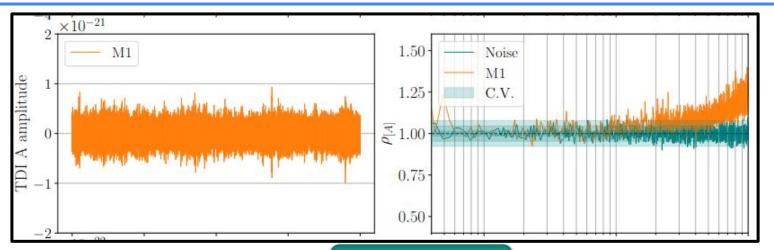
$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{GW}(f, f')$$

$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{GW}(f, f')$$

- Non-Stationarity (glitches, ...) (Alvey+24)
- Noise Uncertainties (Muratore+23)
- Correlation between datastreams (Hartwig+23)
- ..

$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{GW}(f, f')$$

- Non-stationarity, Anisotropy, Non-Gaussianity
- Overlapping signals
- Uncertainties in the Models (both Astro&Cosmo)
 —> Model Flexibility

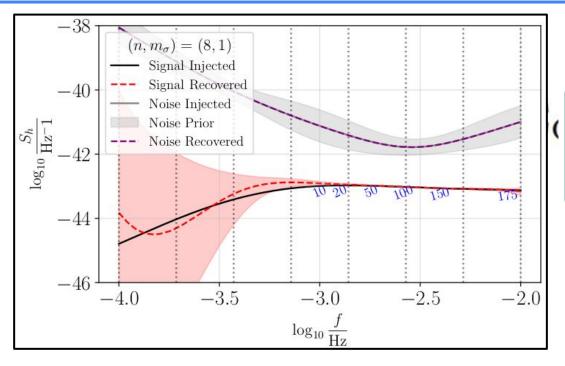


Non-stationarity, Anisotropy, Non-Gaussianity

*Piarulli, Buscicchio, **Pozzoli**+24
Non-Gaussianity for EMRI SGWB
*Buscicchio+24
Non-Gaussianity for Galactic foreground

$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{GW}(f, f')$$

- Non-stationarity, Anisotropy, Non-Gaussianity
- Overlapping signals
- Uncertainties in the Models (both Astro&Cosmo)
 —> Model Flexibility



Pozzoli+24: a flexible parametrization based on Gaussian Process Theory

- Uncertainties in the Models (both Astro&Cosmo)
 - —> Model Flexibility

$$\Sigma(f, f') = \Sigma_n(f, f') + \Sigma_{GW}(f, f')$$

TODAY

- Non-stationarity, Anisotropy, Non-Gaussianity
- Overlapping signals
- Uncertainties in the Models (both Astro&Cosmo)
 —> Model Flexibility

$$E[X(t)] = m(t) = m(t+T)$$

$$E[X(t')X(t)] = \Sigma(t',t) = \Sigma(t'+T,t+T)$$

$$E[X(t)] = m(t) = m(t+T)$$

$$E[X(t')X(t)] = \Sigma(t',t) = \Sigma(t'+T,t+T)$$

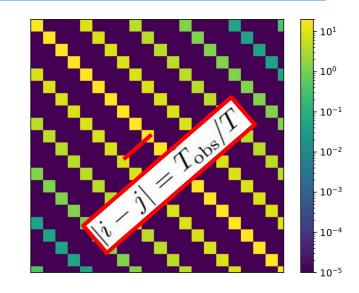
$$B(t,\tau) = \sum_{n=-\infty}^{+\infty} B_n(\tau) e^{2\pi i \frac{nt}{T}}$$

$$E[X(t)] = m(t) = m(t+T)$$

$$E[X(t')X(t)] = \Sigma(t',t) = \Sigma(t'+T,t+T)$$

$$B(t,\tau) = \sum_{n=-\infty}^{+\infty} E_n(\tau)e^{2\pi i\frac{nt}{T}} \longrightarrow C(f,f') = \sum_{n=-8}^{n=8} B_n S_h\left(\frac{f'+f}{2}\right)\delta\left(f-f'+\frac{n}{T}\right)$$

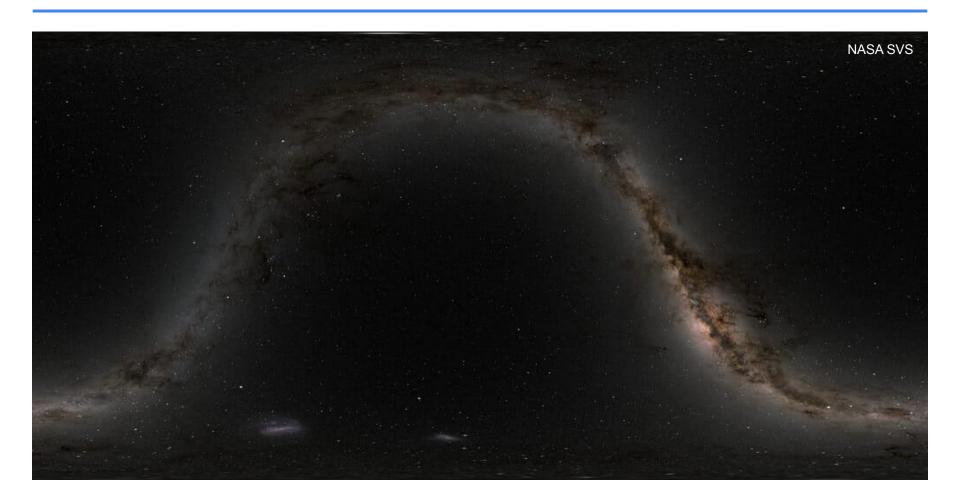
$$\begin{split} E\left[X(t)\right] &= m(t) = m(t+T) \\ E\left[X(t')X(t)\right] &= \Sigma(t',t) = \Sigma(t'+T,t+T) \end{split}$$



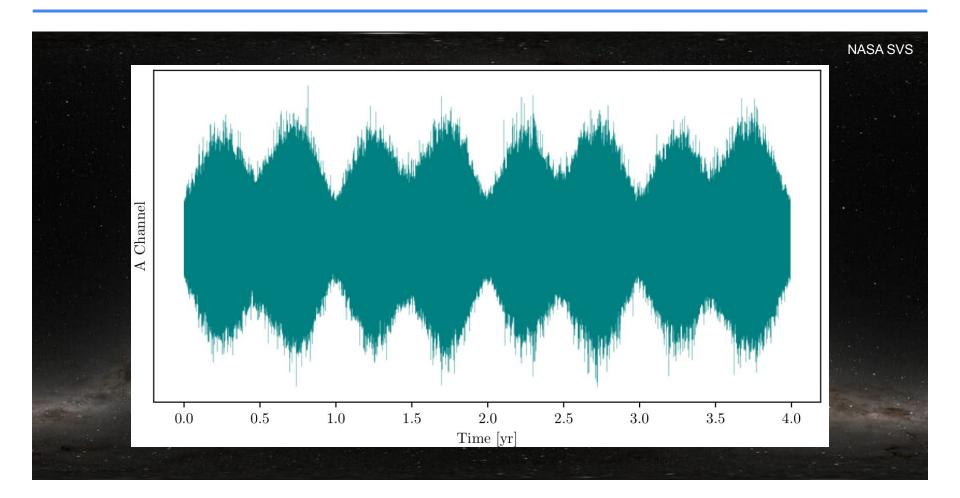
$$B(t,\tau) = \sum_{n=-\infty}^{+\infty} E(t',t)$$

$$B(t,\tau) = \sum_{n=-\infty}^{+\infty} B_n(\tau)e^{2\pi i\frac{nt}{T}} \longrightarrow C(f,f') = \sum_{n=-8}^{n=8} B_nS_h\left(\frac{f'+f}{2}\right)\delta\left(f-f'+\frac{n}{T}\right)$$

CYCLOSTATIONARITY IN LISA



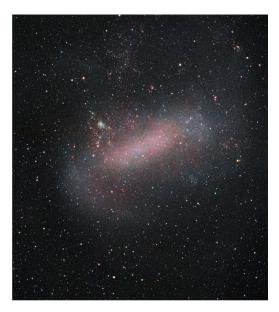
CYCLOSTATIONARITY IN LISA

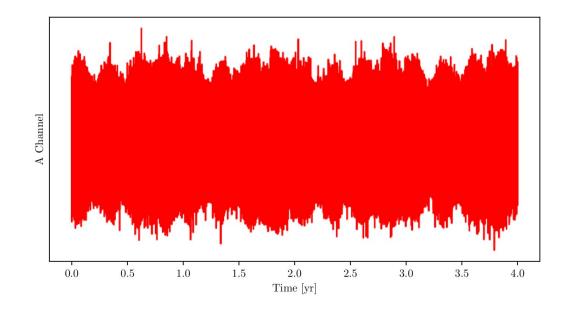


CYCLOSTATIONARITY IN LISA

Unresolved DWDs in Milky Way Satellite (e.g., LMC, SMC, Sagittarius,...) and in nearby Galaxies (e.g., Andromeda) contribute to a SGWB

LMC

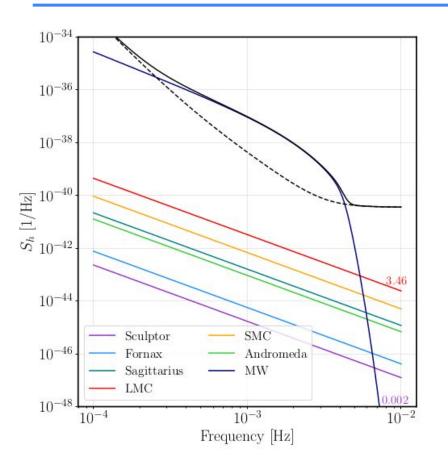




$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h \left(\frac{f'+f}{2}\right) \delta\left(f - f' + \frac{n}{T}\right)$$

$$C(f, f') = \sum_{h=0}^{n=8} B_h S_h \left(\frac{f'+f}{2}\right) \delta \left(f - f' + \frac{n}{T}\right)$$

Fourier coefficient of MODULATION



$$C(f, f') = \sum_{n=-8}^{n=8} B_n \delta_h \left(\frac{f'+f}{2} \right) \delta \left(f - f' + \frac{n}{T} \right)$$

Milky Way Foreground

(Karnesis+21)

$$S_h(f) = \frac{A}{2} f^{-7/3} e^{-(f/f_1)^{\alpha_{\text{MW}}}} \left(1 + \tanh\left(\frac{f_{\text{knee}} - f}{f_2}\right) \right)$$

$$S_h(f) = A_{\text{sat}} \left(\frac{f}{10^{-3.5} \text{Hz}} \right)^{\gamma}$$
$$\gamma = -(9 + 3\alpha)/3$$

Korol+22

Amplitude of GW Inspiral

$$S_h(f) = \int d\mathcal{M}_c p(\mathcal{M}_c) \int df_s p(f_s) \delta(f - f_s) \frac{(G\mathcal{M}_c)^{10/3}}{(c^4 D)^2} (\pi f_s)^{4/3}$$

$$S_h(f) = A_{\text{sat}} \left(\frac{f}{10^{-3.5} \text{Hz}} \right)^{\gamma}$$

 $\gamma = -(9 + 3\alpha)/3$

Korol+22 $S_h(f) = \int d\mathcal{M}_c p(\mathcal{M}_c) \int df_s p(f_s) \delta(f - f_s) \frac{(G\mathcal{M}_c)^{10/3}}{(c^4D)^2} (\pi f_s)^{4/3}$

DWDs in a satellite have all the same distance

$$S_h(f) = A_{\text{sat}} \left(\frac{f}{10^{-3.5} \text{Hz}} \right)^{\gamma}$$

$$\gamma = -(9 + 3\alpha)/3$$

$$S_h(f) = \int d\mathcal{M}_c p(\mathcal{M}_c) \int df_s p(f_s) \underbrace{\delta(f-f_s)}^{(G\mathcal{M}_c)^{10/3}}_{(c^4D)^2} (\pi f_s)^{4/3}$$
 Due to Fourier Transform of cos In Inspiral waveform

$$S_h(f) = A_{\text{sat}} \left(\frac{f}{10^{-3.5} \text{Hz}} \right)^{\gamma}$$

$$\gamma = -(9 + 3\alpha)/3$$

Korol+22

Amplitude of GW Inspiral

$$S_h(f) = \int d\mathcal{M}_c p(\mathcal{M}_c) \int df_s p(f_s) \delta(f - f_s) \frac{(G\mathcal{M}_c)^{10/3}}{(c^4 D)^2} (\pi f_s)^{4/3}$$

Maoz+18 Binary Separation distribution is a power law with slope a + 4

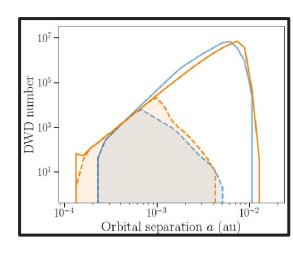
Satellite Background

$$S_h(f) = A_{\text{sat}} \left(\frac{f}{10^{-3.5} \text{Hz}}\right)^{\gamma}$$

$$\gamma = -(9 + 3\alpha)/3$$

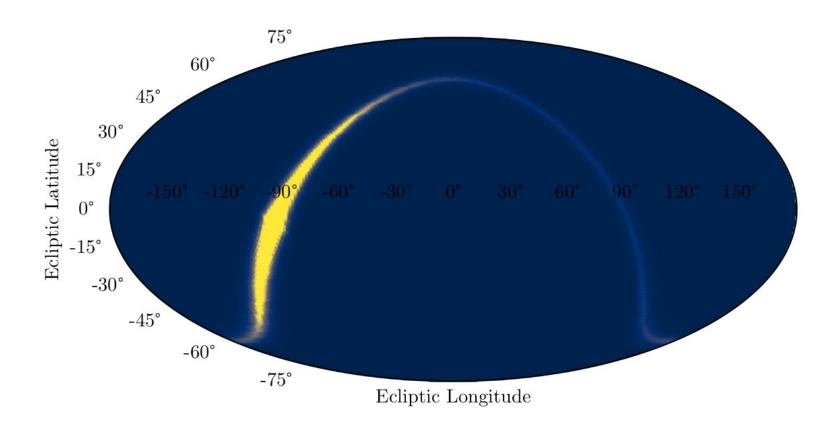
 $\alpha \approx -1.3$

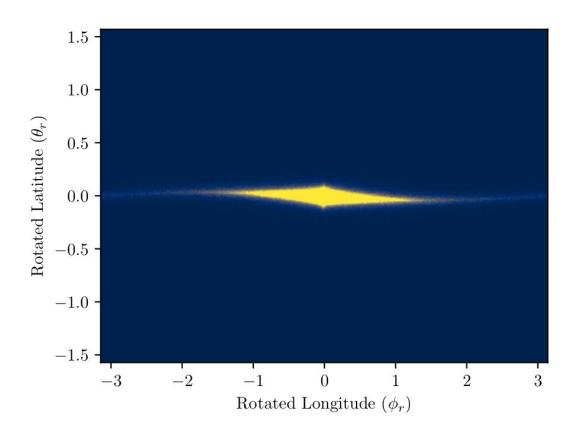
Based on spectroscopic observation

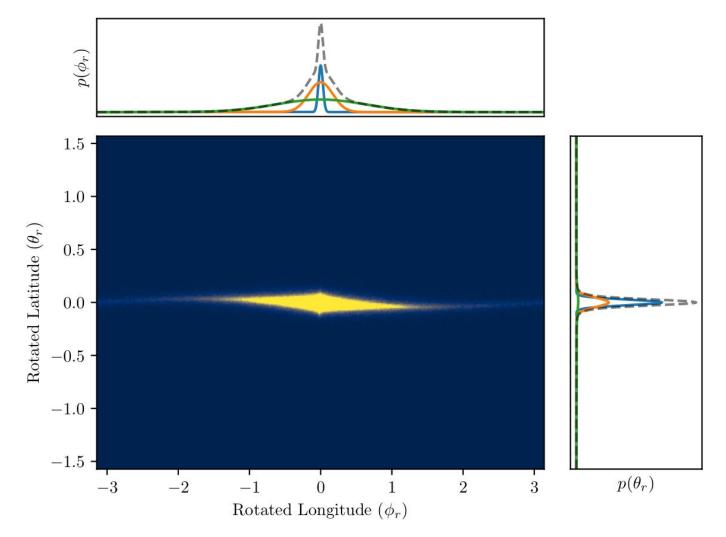


We have to average the time domain signal in LISA over the probability distribution of the sources in the sky

$$\int d\lambda \int d\beta \cos \beta p(\lambda, \beta) h^2(t, \lambda, \beta)$$







We have to average the time domain signal in LISA over the probability distribution of the sources in the sky

$$\int d\lambda \int d\beta \cos \beta p(\lambda, \beta) h^2(t, \lambda, \beta)$$

We have to average the time domain signal in LISA over the probability distribution of the sources in the sky

The problem reduces to resolve integral like

$$\int_{\mathcal{R}} d\theta_r \int_{\mathcal{R}} d\phi_r p(\theta_r) p(\phi_r) e^{im\theta_r} e^{in\phi_r}$$

We have to average the time domain signal over the probability distribution of the sources in the sky

$$\int_{\mathcal{R}} d\theta_r \int_{\mathcal{R}} d\phi_r p(\theta_r) p(\phi_r) e^{im\theta_r} e^{in\phi_r} = \varphi_{\theta_r}(m) \varphi_{\phi_r}(n)$$

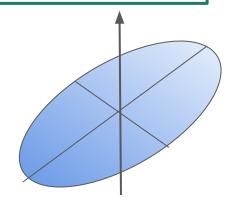
The solution is well-know for a large set of probability distribution, and it is called

CHARACTERISTIC FUNCTION

We relate the signal modulation to the properties of the distribution

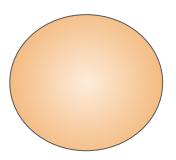
Milky Way Modulation Parameters:

- Center Coordinates of distribution
- Rotation Angle
- Gaussian Variances (Sizes of distribution)



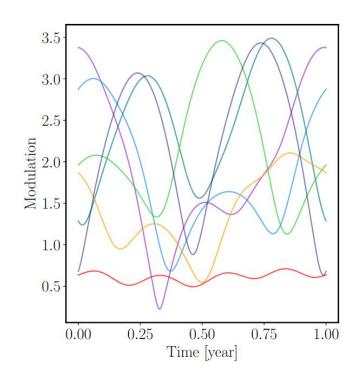
Satellite Modulation Parameters:

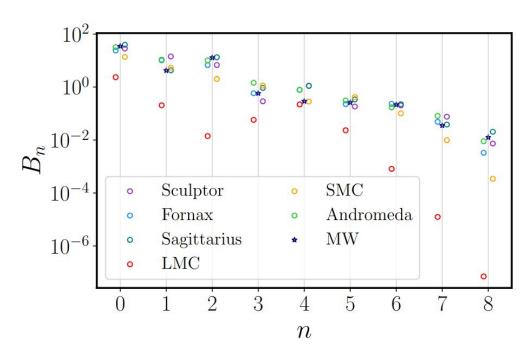
- Center Coordinates of distribution
- Gaussian Variance (Size of distribution)

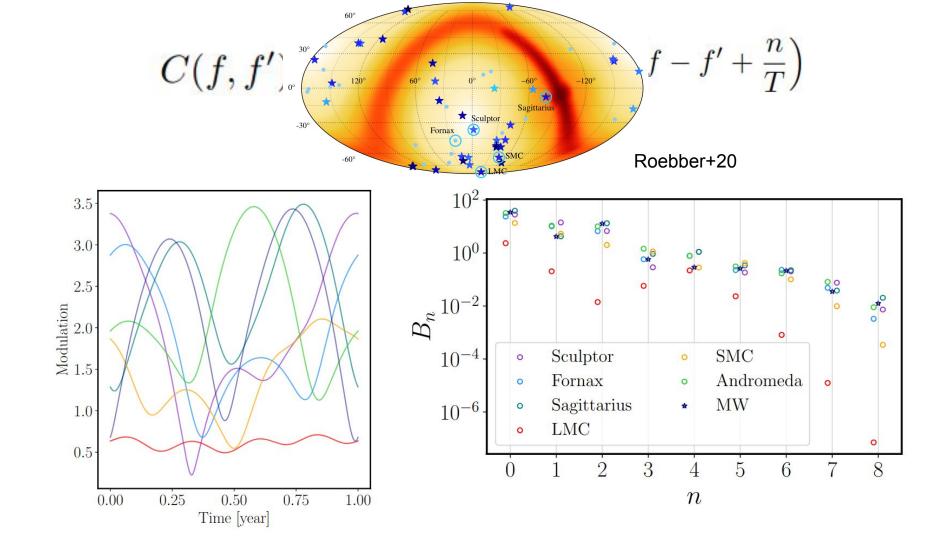


$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h \left(\frac{f'+f}{2}\right) \delta\left(f - f' + \frac{n}{T}\right)$$

Fourier Coefficient of Modulation



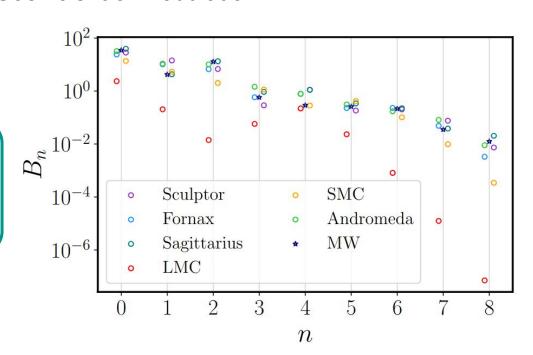




$$C(f, f') = \sum_{n=-8}^{n=8} B_n S_h \left(\frac{f'+f}{2} \right) \delta \left(f - f' + \frac{n}{T} \right)$$

Fourier Coefficient of Modulation

The modulation is **primarily** influenced by **latitude**, while the impact of **size** is a **secondary effect.**



CYCLOSTATIONARY MODEL

Likelihood

$$\begin{split} \log \mathcal{L}(\tilde{d}|\boldsymbol{\theta} &= \{\boldsymbol{\theta}_{\mathrm{MW}}, \boldsymbol{\theta}_{\mathrm{sat}}, \boldsymbol{\theta}_{\mathrm{n}}\}) \propto -\sum_{i=A,E} \frac{1}{2} \log (\det \left[\boldsymbol{\Sigma}_{\mathrm{d}}\right]_{\mathrm{i}}) + \frac{1}{2} \tilde{d}_{\mathrm{i}}^{\mathrm{T}} \left[\boldsymbol{\Sigma}_{\mathrm{d}}\right]_{\mathrm{i}}^{-1} \tilde{d}_{\mathrm{i}} \\ \left[\boldsymbol{\Sigma}_{\mathrm{d}}\right]_{i} &= \left(\boldsymbol{\Sigma}_{\mathrm{MW}}(\boldsymbol{\theta}_{\mathrm{MW}}) + \boldsymbol{\Sigma}_{\mathrm{sat}}(\boldsymbol{\theta}_{\mathrm{sat}}) + \boldsymbol{\Sigma}_{\mathrm{n}}(\boldsymbol{\theta}_{\mathrm{n}})\right)_{i} \end{split}$$

Parameter

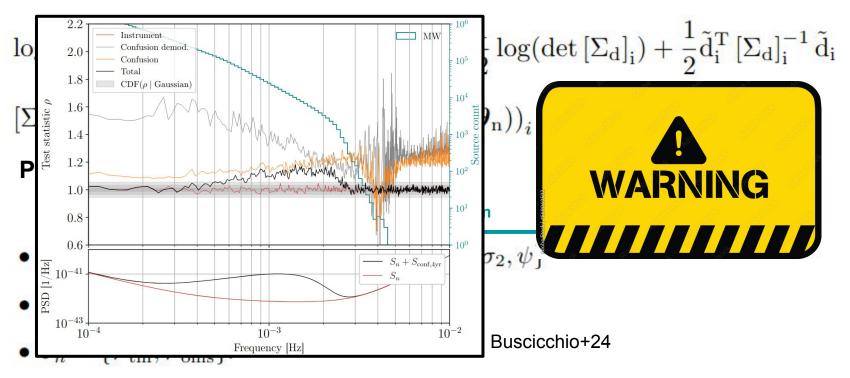
Spectrum

Modulation

- $\boldsymbol{\theta}_{\text{MW}} = \{ \mathcal{A}_{\text{MW}}, \alpha, f_{\text{knee}}, f_2, f_1, \lambda, \sin \beta, \sigma_1, \sigma_2, \psi \}$
- $\theta_{\text{sat}} = \{ A_{\text{sat}}, \gamma, \lambda, \sin \beta, \sigma \};$
- $\theta_n = \{\mathcal{P}_{tm}, \mathcal{P}_{oms}\}.$

CYCLOSTATIONARY MODEL

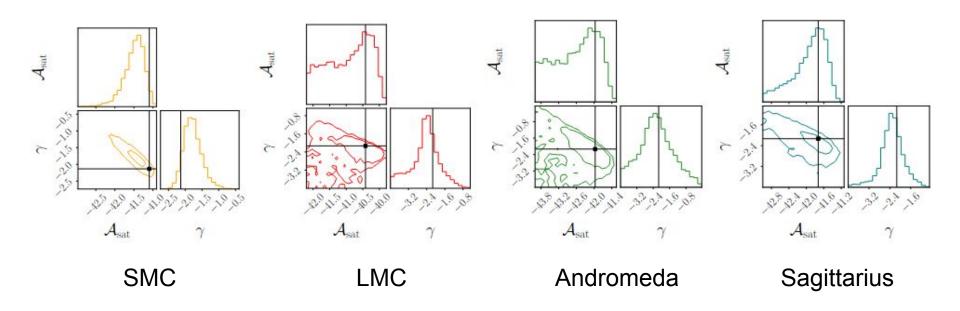
Likelihood



RESULTS - Satellite (Mock) + Noise

With our modulation parametrization, we can place physically informed prior.

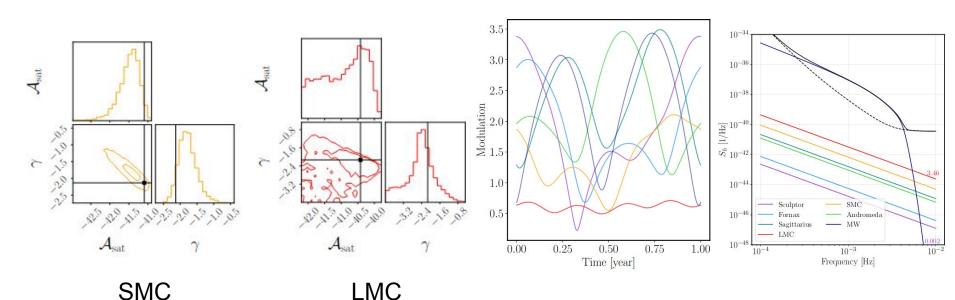
We assume **perfect knowledge of the satellite's sky position**, as they are already well-determined through EM observations.



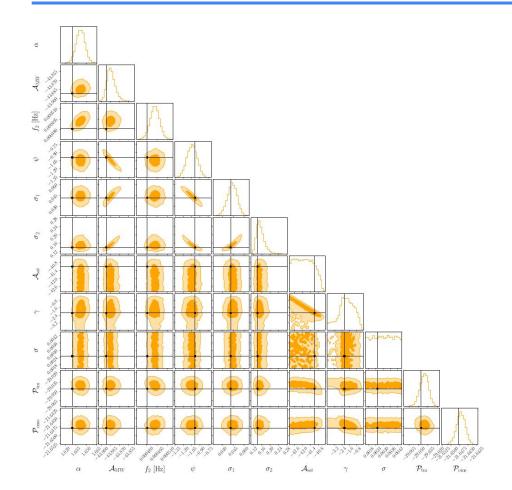
RESULTS - Satellite (Mock) + Noise

With our modulation parametrization, we can place physically informed prior.

We assume **perfect knowledge of the satellite's sky position**, as they are already well-determined through EM observations.



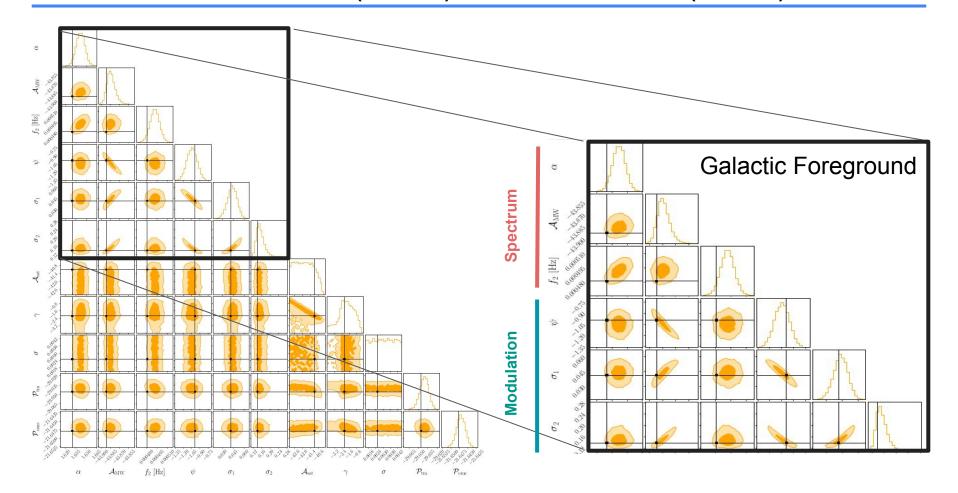
RESULTS - Satellite (Mock) + Noise + MW (Mock)



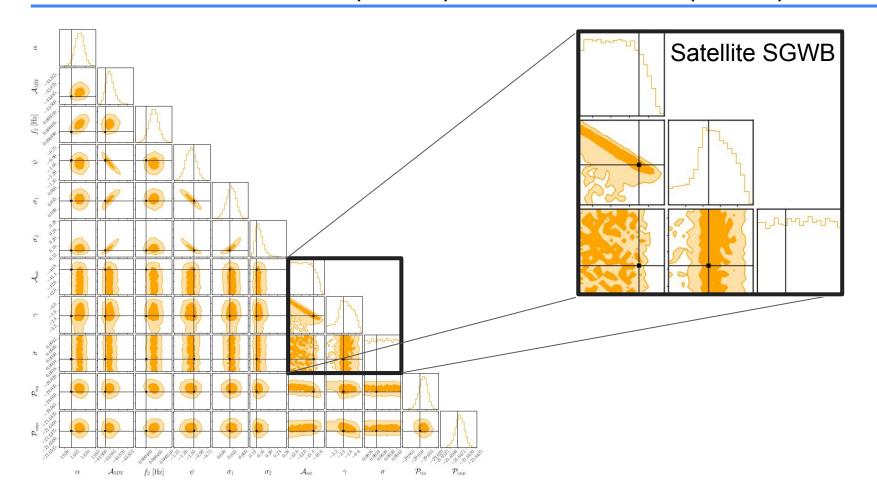
We are able to recover the MW (both the modulation and spectrum)

MW compromises the satellite detection (as expected)

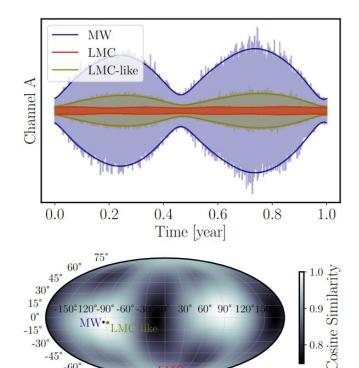
RESULTS - Satellite (Mock) + Noise + MW (Mock)



RESULTS - Satellite (Mock) + Noise + MW (Mock)



RESULTS - Hidden Satellite



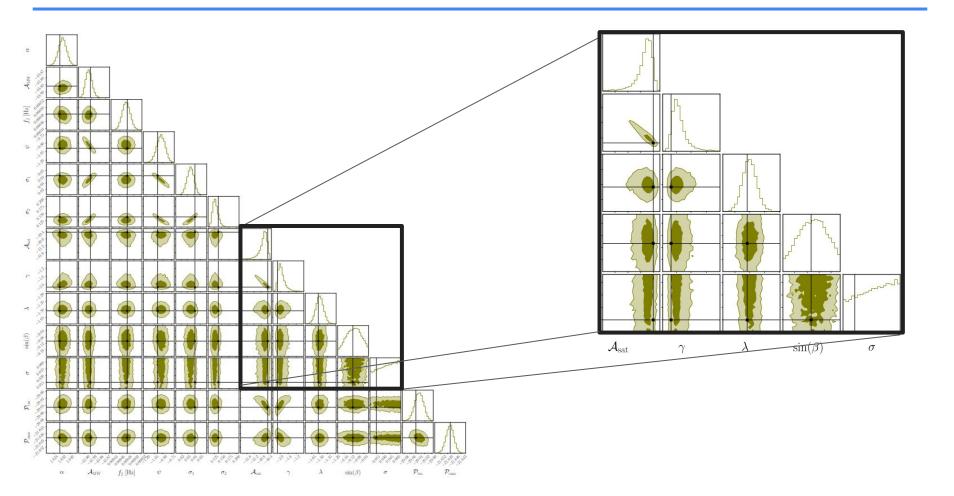
Unlike EM radiation, GW are not obscure by gas and dust

Thus, LISA has the potential to observe beyond the galactic plane (Zone of Avoidance)

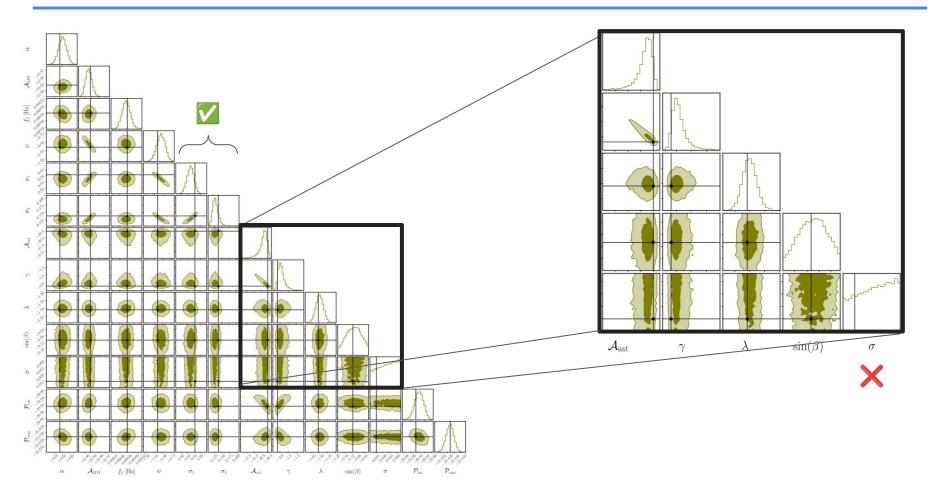
We consider an LMC-like satellite behind the Milky Way (i.e. same Astrophysical spectrum -> same total mass and distance)

Are we able to observe it?

RESULTS - Hidden Satellite



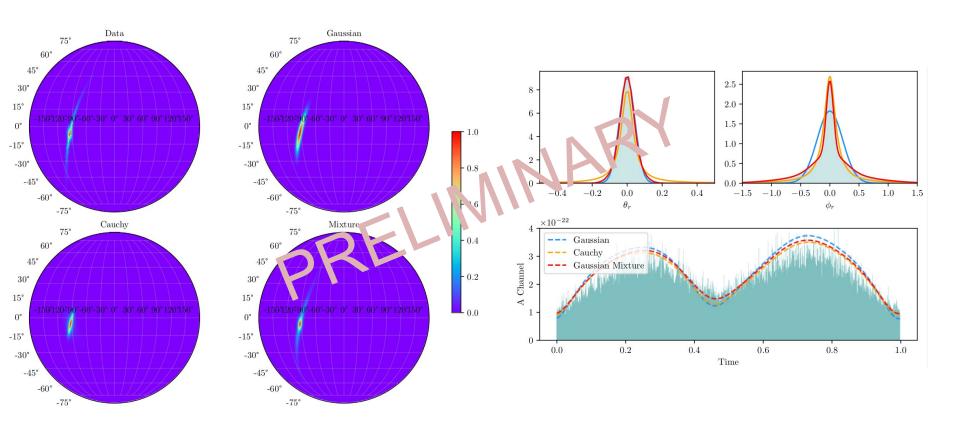
RESULTS - Hidden Satellite



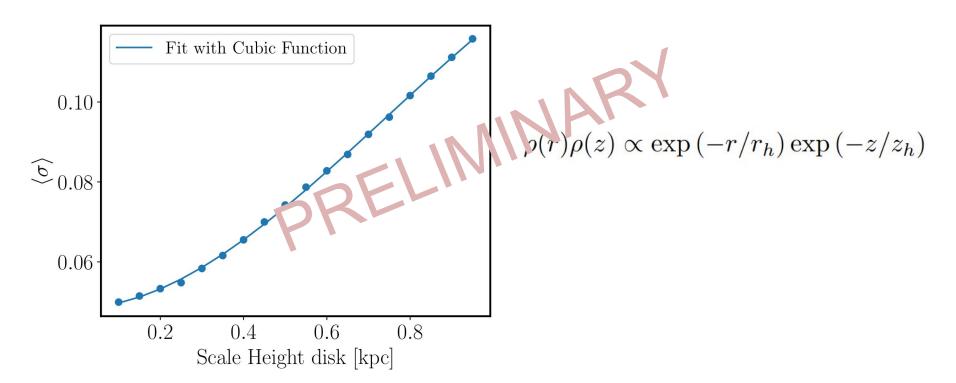
CONCLUSION

- We introduce a novel method to address anisotropy from astrophysical SGWB.
- Detection of MW satellite strongly depends on the interplay between the spectrum and modulation.
- We could have access to Zone of Avoidance with LISA behind Milky Way
- Study Milky Way Morphology and structure with DWD foreground

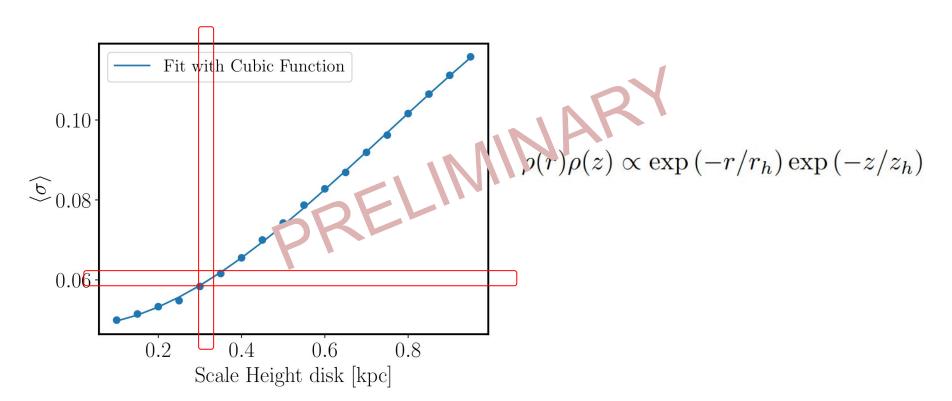
WHAT's NEXT



WHAT's NEXT



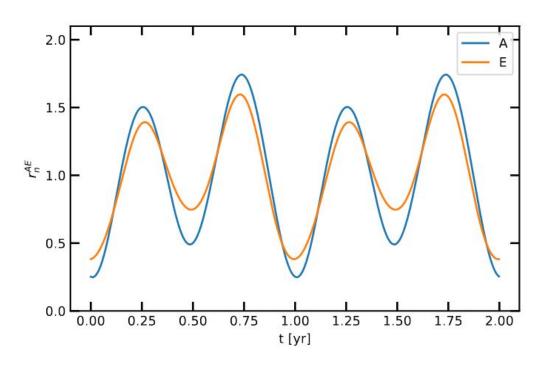
WHAT's NEXT



BACKUP SLIDES

MODULATION

Digman&Cornish (2022) provide a phenomenological fit based on a realization of MW foreground



ASTROPHYSICAL SPECTRUM

$$S_h(f) = \int d\mathcal{M}_c p(\mathcal{M}_c) \int df_s p(f_s) \delta(f - f_s) \frac{(G\mathcal{M}_c)^{10/3}}{(c^4 D)^2} (\pi f_s)^{4/3}$$

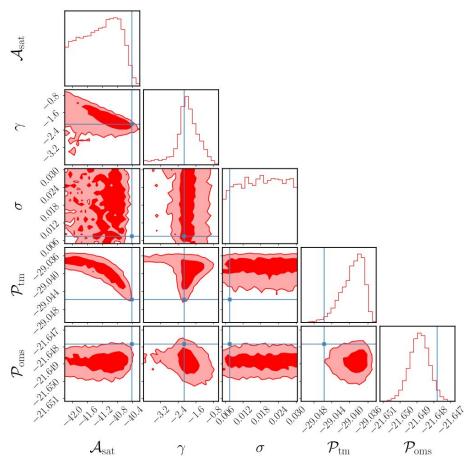
Primiray Mass m1: Gaussian Mixture based on SDSS spectroscopic observation

(Kepler+15)

Secondary Mass m2: Flat distribution [0.15 M⊚, m1]



RESULTS - Satellite (Realistic) + Noise



LMC from catalog generated with Stellar Population Synthesis code (Korol+24)

We fix the sky position of LMC in the modulation model