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Motivation- composite materials

Concrete is cheap and relatively light, but it 
breaks apart easily under tension. By contrast, 
steel is strong but expensive and heavy. By 
pouring the concrete around prestressed metal 
bars one obtains a composite, namely, reinforced 
concrete, that is cheap, relatively light, and strong.

Modern day composites can also 
involve materials made of 
programmable robots. Macroscopic 
description of such materials requires a 
modified viscoelastic description.

Coulais Lab



Granular matter

Wikipedia

A granular material is a 
conglomeration of discrete 
solid, macroscopic 
particles characterized by 
a loss of energy whenever 
the particles interact. 
Examples of granular 
materials are snow, nuts, 
coal, sand, rice, coffee, 
corn flakes, fertilizer.



Active matter

Hans Overduin/NIS/Minden/Getty

We want to 
understand the 
principles behind 
systems, whose 
microscopic 
constituents are not in 
equilibrium (flocks, 
fish schools)

Active matter systems are made up of units that consume energy. 
Physicists group flocks of birds, molecular motors and layers of vibrating 
grains together in this category because they all extract energy from their 
surroundings at a single particle level and transform it into mechanical 
work. By studying the behaviors that emerge, our understanding of these 
systems can be enhanced and new frameworks for investigating the 
statistical physics of out-of-equilibrium systems can be built.
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Landau paradigm

Disordered liquid states that do not break any symmetry [(A), (C), and (E)].
Ordered states that spontaneously break some symmetries [(B), (D), and (F)].
For example, the energy function has a symmetry � ! ��, "g(�) = "g(��).
However, as the parameter g (e.g., magnetic field) changes, the minimal energy
state (the ground state) sometimes respects the symmetry [(A), (C), and (E)]
and other times must settle into a state that does not respect the symmetry.
Landau theory generalizes the above picture to describe all phases and all phase
transitions. Within this theory, the symmetry of the ordering of constituent
particles distinguishes one phase from another.

Wen



Elasticity

~u(~x, t)

~x0(t) = ~x(t) + ~u(~x, t)

The distance vector between two material points at ~x and ~y is changed from
d~x = ~x � ~y to dx0

a = dxa + @buadxa, and its length from dr =
p
d~x2 to dr0 =p

d~x2 + 2uabdxadxb where the strain tensor uab is in linear approximation,

uab =
1

2

�
@bu

a + @au
b
�
.

R R= 0+ u

R0

At distances large compared to the lattice
constant, one can define a displacement field

such that

Wikipedia



The Cosserat theory of elasticity, also known as micropolar elasticity, endows
classical elasticity with local rotations. Physically it means that the elastic body
is not considered as a collection of points at the microscopic level but rather of
extended objects the can rotate in space. In two dimensions the displacement
vector ui is supplemented with an orientation angle ✓. In the second step we
require that the e↵ective action/free energy is invariant under translations and
rotations. Translations require that under the transformation ui ! ui + bi,
where bi is a constant vector the action remains invariant. Rotations by a
constant angle ✓0 are implemented by two simultaneous transformations ✓ !
✓ + ✓0, ui ! ui + ✏ijxj✓0. Gradients of the displacement field are invariant
under translations but not under rotations. It is, however, possible to construct
a combination

�ij = @iuj � ✏ij✓

The free energy reads

F =

Z
dtd2x

h
✓̇✓̇ + u̇iu̇i � Cijkl�ij�kl + ⇣⌧i⌧

i
i

Cosserat elasticity
Frenzel

et al.



Thermoelasticity
<latexit sha1_base64="bG/IYJKjuwjLAfKoHLfdfvdODLs="></latexit>

We assume that it is a function of the energy, strain, and heat current

s = s(", uij , qi).

This is analogous to viscoelasticity, where the stress or momentum current also
contributes to entropy. Taking the divergence one gets

ds =
d"

T
+

@s

@uij
duij +

@s

@qk
dqk.

We impose the second law of thermodynamics

�s = ṡ+riJ
s
i � 0,

where Js is the entropy current, and supplement the system with conservation
laws

⇢üi + @jtij = 0 ,

"̇+ @jqj + u̇ijtij = 0 ,

⇢̇ = 0 .



Odd Thermoelasticity
<latexit sha1_base64="lfIYgLX4DA2PiAxX2rb6hVtbXmc="></latexit>

Using the conservation laws, after some algebra, we find

�s = qiri(1/T ) + �iq̇i � 0,

We now assume, in the linear regime, that

�i = �↵ijqj ,

for some phenomenological tensor ↵ij . When ↵ij is positive the system is

bounded from below with a well-defined equilibrium state. Similarly, we impose

ri(1/T ) + ↵ij q̇j = �ijqj , from which relation we obtain ⌧ij q̇j = �kijrjT � qi,
where ⌧ij = ↵ik�

�1
kj , kij = ��1

ij /T 2
. For even passive materials (↵ij = ↵�ij ,

�ij = �ji = ��ij) this reduces to the isotropic, even Maxwell-Cattaneo relation

⌧ q̇i = ��riT � qi,

where ⌧ = ↵� and � = �/T 2
. However, for odd active thermoelastic materials,

we can have a generalized relation, with odd components ⌧odd and kodd. kodd is

an active component of heat conductivity in odd materials.

Ostoja-Starzewski, Surówka



This conservation of particle number is expressed in hydrodynamics as conservation of mass, 
by the continuity equation

We are still one equation short to have a complete system. We add entropy conservation 
equation, which can be expressed as energy conservation using thermodynamics

Another equation is the equation of motion of a fluid element. This equation can be 
written as a momentum conservation equation.

Hydrodynamics - a theory of 
conserved quantities

Rewriting we get the Euler’s equation

@t⇢+ @i(⇢ui) = 0

@t(⇢ui) + @jTij = 0 Tij = p�ij + ⇢uiuj

@t

✓
"+

⇢u2

2

◆
+ @i

✓
w +

⇢u2

2

◆
ui

�

⇢
@~u

@t
+ ⇢~u ·r~u = �rp+ ⌫r2~u



Viscoelasticity

Viscoelasticity is the property of materials that exhibit both viscous 
and elastic characteristics when undergoing deformation.

Modelled 
by a 

spring

Modelled 
by a 

dashpot/
damper

Modelled by a 
combination of 

springs and 
dashpots

The creep-recovery test 
involves loading a 
material at constant stress, 
holding that stress
for some length of time 
and then removing the 
load. 



Linear spring
The constitutive equation for a material which responds as a linear elastic spring
of sti↵ness E is

" =
1

E
�

Linear viscous dashpot

"̇ =
1

⌘
�

⌘ is the viscosity of the material. This is the characteristic response of Newtonian
fluids. The larger is the stress, the faster is the straining.

An elastic material undergoes an instantaneous elastic strain upon loading,
maintains that strain so long as the load is applied, and instantaneously goes
back to the initial position upon removal of the load.

A dashpot responds with a strain rate proportional to the applied stress



Creep recovery response

Linear spring

The creep response follows immediately from the solution of 
constitutive equations
Dashpot

"(t) = �0J(t) J(t) =
t

⌘

J(t) is called the creep (compliance) function.

J(t) =
1

E



Kelvin Voigt solid

" =
1

E
�1 "̇ =

1

⌘
�2

� = �1 + �2

We first consider a two-element model, the Kelvin-Voigt model, which consists of a 
spring and dashpot in parallel. We assume no bending moment.

Total stress is a sum of the individual stresses in the dashpot and the spring. Responses 
are controlled by elastic and viscous transport coefficients. Eliminating individual 
components of the stress one gets the constitutive equation:

� = E"+ ⌘"̇
Solving the first order non-homogeneous differential with vanishing initial strain gives 

"(t) =
�0

E

h
1� e�(E/⌘)t

i
⌘
E ⌘ ⌧R

Retardation time is a measure of the time taken for the creep strain to accumulate.



Maxwell fluid

Another possibility for a two element representation of a viscoelasticity is a spring and 
dashpot in series, known as the Maxwell model.

"1 =
1

E
� "̇2 =

1

⌘
� " = "1 + "2

Total strain is a sum of the individual strains in the dashpot and the spring. One can 
eliminate the individual strains to get the constitutive equation

� +
⌘

E
�̇ = ⌘"̇

When the Maxwell model is subjected to a stress, the spring will stretch immediately 
and the dashpot will take time to react. Using this as the initial condition gives

"(t) = �0

✓
1

⌘
t+

1

E

◆

A new feature is the stress relaxation.



Limitations

The Maxwell model predicts creep, but it does not 
decrease with time. There is no anelastic recovery 
(strain recovers over time).

No stress relaxation in the Kelvin-Voigt model

Not covariant (frame indifferent)

Not applicable to chiral systems

No plasticity



Three element models
The usual procedure to get more realistic models of viscoelasticity is to increase the 
number of elements. the simplest extension is to add one spring or one dashpot. Again 
one distinguishes two classes of models: standard linear solids (Zener models) or 
standard linear fluids (Jeffreys models)

� + ⌧ �̇ = E1"+ ⌧E2"̇

Constitutive relation Representation

� + ⌧ �̇ = ⌘1"̇+ ⌧⌘2"̈

In order to derive the constitutive equations we need to solve equations for individual 
elements. The can be done in one dimension but becomes not practical in higher 
dimensions. Therefore we would like to follow the symmetry approach.



Navier-Stokes equation from 
symmetries
What terms we can write to describe a Galilean invariant fluid? We postulate 
that in very reference frame the physics is the same

t0 = t, ~x0 = ~x+ ~ut, ~v0(t0, ~x0) = ~v(t, ~x) + ~u

We check how the derivatives transform:

@

@t0
=

@

@t
� ~u · ~r @~v0

@t0
=

@~v

@t
� (~u · ~r)~v

There is a leftover term. We check how it transforms

(~v0 · ~r0)~v0 = (~v · ~r)~v + (~u · ~r)~v

We can construct an invariant equation

~r0 = ~r r02~v0 = r2~v

@~v

@t
+ (~v · ~r)~v = ⌘r2~v � 1

⇢
~rP



Oldroyd models
Oldroyd in 1950 formulated the first systematic attempt to provide constitutive models for 
viscoelastic fluids in a way that respects material frame indifference. In other words 
stresses in a continuous medium should arise from deformations only and not from 
rotations. We saw that in the context of NS equations

d/dt ! @/@t+ (v ·r)

This simple substitution does not work if we act on tensors. Oldroyd proposed several 
derivatives that transform covariantly w.r.t. rotations. In the modern language such a 
corresponds to a covariance under diffeomorphisms of the fluid manifold. From 
differential geometry we know that the derivative that generates the diffeomorphism is 
the Lie derivative.

D

Dt
Ai...m

j...n = Ȧi...m
j...n + LNAi...m

j...n

N i describes the movement of a fluid particle w.r.t. the coordinate (frame)
choice in the fluid space.



Transport and elastic coefficients

A small deformation parametrized by a displacement vector ui, i = 1, . . . , d
produces a stress that depends on the strain uij = @iuj + @jui and the strain
rate u̇ij ⌘ @tuij through the elastic modulus (K) and viscosity (⌘) tensors

Tij = p�ij �Kijklukl � ⌘ijklu̇kl.

As a warm-up exercise let us consider fluids. The first term is the pressure. 
When time reversal invariance is not broken, the viscosity tensor satisfies 
Onsager's relations

⌘ijkl = ⌘klij .

For a rotationally invariant system the above relation allows one
 only two possible transport coefficients, the shear and bulk viscosities

⌘ijkl = ⌘(�ik�jl + �il�jk) +

✓
⇣ � 2

d
⌘

◆
�ij�kl.



“Odd” transport in two dim.

When time reversal invariance is broken, as for instance if a background 
magnetic field is turned on, the conditions Onsager are relaxed and it is 

possible to have an `odd' contribution to the viscosity

⌘(A)
ijkl = �⌘(A)

klij .

A peculiarity of the odd viscosity is that can be dissipationless. The 
variation of the energy density under a strain is

Using the first law of thermodynamics �" = T �s � p�V , with s the entropy
density, T the temperature and V the volume, the change of entropy with time
becomes

�" = �Tij�uij .

T ṡ = ⌘ijklu̇ij u̇kl.



Odd viscosity

In general, ⌘(A)
= 0 if rotational invariance is not broken. However, for d = 2

spatial dimensions an odd viscosity is allowed if parity is also broken

⌘(A)
ijkl

= �⌘H
2
(✏ik�jl + ✏jk�il + ✏il�jk + ✏jl�ik).

Is it possible to have an analogous expression for elasticity?

Shear response Odd/Hall response

“Everyone knew it was impossible, until a fool who didn’t know came along and did it.”— Albert Einstein



Odd Elasticity

Free energy for elasticity reads

Odd terms vanish identically

K [ij]kl = 0

Kij[kl] = 0

Kijkl = Kklij

left minor symmetry

right minor symmetry

major symmetry
Odd elasticity implies a violation of major symmetries. Differs 
from Cosserat elasticity.

F =
1

2

Z
dtd2x

h
u̇iu̇i �Kijkluijukl

i



Elasticity in two dimensions

u0(x) = ⌧0ijuij(x) Dilation

u1(x) = ⌧1ijuij(x) Rotation

u2(x) = ⌧2ijuij(x) Shear strain 1

u3(x) = ⌧3ijuij(x) Shear strain 2
Avron



Viscoelastic odd KV solids

Isotropy and conservation laws
fix the form of the elastic tensor. In 
the usual case two positive elastic 

moduli.

K↵� = 2

0

BB@

�+ µ 0 0 0
0 0 0 0
0 0 µ 0
0 0 0 µ

1

CCA

↵�

If one doesn’t impose the 
conservation of energy two new 
coefficients are allowed. Stability 

requires adding a relaxation 
mechanism e.g. viscosity.

K↵� = 2

0

BB@

�+ µ 0 0 0
A 0 0 0
0 0 µ �o

0 0 o µ

1

CCA

↵�

Possible mechanical realisation

Scheibner, Souslov, Banerjee, 
Surówka, Irvine, Vitelli



Odd viscoelastic Maxwell fluids

The constitutive equation together with the momentum conservation equation for the 
Maxwell fluid read

vkl = ⌘�1
ijkl�ij + �1

ijkl

D

Dt
�ij ,

⇢
D

Dt
vi = �@ip+ @j�ij ,

These equations are much more complicated to deal with then for solids with a lot of 
unknown properties. As simple physical example we can look at relaxation times

⌧̃ =
⌘ + ⇣

µ+ �
⌧̃1,2 =

⌘oo + ⌘µ± i(⌘oµ� ⌘o)

µ2 + (o)2

Contrary to even viscoelastic fluids transverse and longitudinal modes cannot be 
decoupled. The non-dissipative part corresponds to chiral metric hydrodynamics
proposed by Son to describe fractional Hall states.

Banerjee, Vitelli, Jülicher, 
Surówka



Lift force

New incarnation of an old problem: what are 
the forces on a cylinder in an odd fluid?

What about compressible odd fluids? In the steady case the lift force is 
present only if mass is not conserved. However, the lift force can be 
present if the fluid is oscillating. This opens up a possibility to measure 
it by microrheological experiments. 

In a fluid without parity breaking the cylinder 
experiences only drag. Symmetries in odd fluids 

do not forbid lift, although it was shown by 
Ganeshan and Abanov that incompressible odd 

fluid does not experience lift.  
fl / !̃ ln !̃

Lier, Duclut, Bo, Armas, Jülicher, 
Surówka



Elasticity as a gauge theory

S[ui] =

Z
dtd2x

h
u̇iu̇i � Cijkluijukl

i
,

The action (or free energy at finite temperature) is

where Cijkl is a tensor of elastic moduli.

The equation of motion takes the form of a conservation law for momentum

Ṗ i + @jT
ij = 0 , @µT

iµ = 0 .

Next we reformulate the partition function in terms of the dual variables by 
essentially performing a Legendre transformation

S[P i, T ij , ui] =

Z
dtd2x

h
PiP

i + C�1
ijklT

ijT kl + ui(@µT
iµ)

i
.

Pretko, Radzihovsky



we split the displacement filed into the smooth and singular part and 
perform integral over the smooth part.

Z =

Z
DP iDT ijeiS[P i,T ij ]�

�
@µT

iµ
�
.

We are going to resolve the constraint by introducing a tensor gauge field

T iµ = ✏µ⌫⇢@⌫A
i
⇢ .

The formulation contains the gauge redundancy of the stress tensor

�Ai
µ = @µ↵

i .

It is convenient to define the generalized electric and magnetic fields

Bi = ✏kl@kA
i
l , Ei

j = ✏ik(�@0A
k
j + @j�

k) .

The momentum and stress tensor map to the vector magnetic field and 
tensor electric field

P i = Bi , T ij = ✏i
k✏j

lEkl .



Conclusions

Odd viscoelasticity is a new phenomenon, which 
can shed light on aspects of meta-materials and 
active matter

Microscopic models allow for analytic control

New applications

Playground for physicists and engineers

Thank you!


