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N The_Strong CP Problem Why?
LD 0GG + mQQQ O =0, + arg (det mg) 0 é 10_9

Proposed Solutions

~ a

QCD Axion £ 2 §,GG + moQQ - ; GG = -0 =0

Nelson-Barr Propose CP as a symmetry

O(XO, arg (det mg) = 0
Fine Tune O(Xrg (detmg) 10~

G. Dvali Claim: 6o comes from choice of quantum state. Not a parameter

Consequence: Strong CP can only be solved by dynamical methods i.e. axion!
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The Hydrogen Atom

H- -

,
Spherically Symmetric Hamiltonian

Energy Eigenstates: . . :
1s 2S 2P

Spherically symmetric Hamiltonian. Non-spherically symmetric states

Hydrogen Produced by a number of high energy processes in early universe

Pretty much all hydrogen we see is in 1s.

Not a problem - states decay to Is
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Hydrogen with Massive Photon

2
H D —e A Me My T QM

N\

Bound states still exist - but a number of stable states

Hydrogen Produced by a number of high energy processes in early universe

Suppose Only See Hydrogen in 1s state
Solve by imposing spherical symmetry?

No!

Hamiltonian already spherically symmetric - still allows
non-spherically symmetric states (2p etc)

Only solutions are dynamical - e.g. massless hidden photon allowing states to decay,
collisions between atoms
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Nearly degenerate
ground states

Eigenstates of Parity
(X -=> -X)



Rigid Pendulum in Gravity

What do the energy eigenstates look like?

V(X)

Band Structure ' i ' i ? i i ‘

(Bloch Waves) TR A A N T
U () = e %u ()

-1.0



V(X)

Band Structure ' i ' i ? i i '

(Bloch Waves) TR Wy S

U () = e %u ()

-1.0

10

Rigid Pendulum in Gravity

What do the energy eigenstates look like?

State Label (like
s, 2s, 2p for H)

Lowest energy band - continuous set of states, labelled by 0



Band Structure ' i ' i ? ' ' '

| | x

(Bloch Waves)
U (z) = e"u (z)

V(X)

-10

-1.0

10

Rigid Pendulum in Gravity

What do the energy eigenstates look like?

State Label (like
s, 2s, 2p for H)

Lowest energy band - continuous set of states, labelled by 0

Find a bunch of such pendulums, all formed at high energy -

but if we only see state 6 = 0?



Band Structure ' i ' i ? ' ' '

V(X)

(Bloch Waves) TR Wy S

U (z) = e"u (z)

-1.0

10

| | x

Rigid Pendulum in Gravity

What do the energy eigenstates look like?

State Label (like
s, 2s, 2p for H)

Lowest energy band - continuous set of states, labelled by 0

Find a bunch of such pendulums, all formed at high energy -

but if we only see state 6 = 0?

Solve by imposing Parity?
NO: Hamiltonian already Parity symmetric. States need not be



Rigid Pendulum in Gravity

What do the energy eigenstates look like?

V(X)

Band Structure ' i ' i ? ' ' '
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| 5 State Label (like
U (z) = e"u (z) Is, 2s, 2p for H)
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Lowest energy band - continuous set of states, labelled by 0

Find a bunch of such pendulums, all formed at high energy -
but if we only see state 6 = 0?

Solve by imposing Parity?
NO: Hamiltonian already Parity symmetric. States need not be

Only Dynamical Solutions Possible - e.g. couple to photon to allow decay
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Given IW(0)>, what is |W(T)>?

W (0)) = / iz f () |z)
z) - / dy K (4, T;2,0) |y)

W (T)) = / dzdy f (2) K (4, T;2,0) |y)

/N

Initial State Propagator

. V(T)=y o |
K (y,T,ZC,O) — <y|e—2HT|$> — / Dﬂ/ X f() dt L(x,x)
v(0)=2x
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Hamiltonian To Lagrangian
V (x) = —kcos (x)
L(x,z)= %]\43’;‘2 —V (o)

There is no 0 in the Lagrangian

But - this is the same quantum problem and thus the same band structure
V(1) = [ dedyf @) K (5. T52.0) |y

l

Got to pick initial state - states labelled by 6
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Hamiltonian To Lagrangian

Band Structure

(Bloch Waves) V() = ey ()

Want to understand quantum mechanics of state 0 (e.g. calculate energy)

z) = /dmg@c, )2l)  T(x— z+1)[[z]) = e?|[z])

— V(T)=y T
K@ (?J,T,CB,O) — P@ (<y‘e_7j ‘aj>) — / ny e’ fo t Lo(x,)
v(0)=x
| R .
Lo = iMx + 0z —V (z)

O enters Lagrangian - looks like a parameter, but actually reflects
restriction to specific quantum state 0
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Rigid Pendulum in Gravity

State Label (like
s, 2s, 2p for H)

Find a bunch of such pendulums, all formed at high energy -

but if we only see state 6 = 0?

%szz —I—X— V()

Ly =

Solve problem by imposing parity x-> =x x

V(X) still periodic - band structure persists. Choice of quantum state

Need dynamical solution
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QCD
H (A%, E%) cP invariant, no 6

What are the 0 vacua?

Need to define vacuum - i.e. state of lowest energy
One choice |A> = 0 - has zero color electromagnetic field

But, other choices also possible: |A> = U, where U is pure gauge

E(A)

VA

Quantum Tunneling
O State Label

_-_--L—)-_=
-\ J | " J e \ J
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QCD

H (A%, E%) cP invariant, no 6
Want to understand quantum mechanics of state 0 (e.g. calculate energy)

LD 0GG

O enters Lagrangian - looks like a parameter, but actually reflects
restriction to specific quantum state 0

From state perspective, pure gauge states separated by large gauge
transformations still exist - band structure persists.

0 : choice of quantum state, not a parameter controlled by
symmetry
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Strong CP Problem

Pendulum in Gravity QCD

V(X)

1.0 Gauge Field A initially has some
random value

| | x

-10 -5 i 10

Why end up in 6 = 0?

Start Pendulum at High
Energy

Why end up in 6 = 0? /

Non-zero cosmological abundance!

Need Dynamical Solution

QCD AXxion
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Nonlinear Optics

Detect high frequency oscillating electric field

Crystal with index of refraction with a linear dependence on electric field
(e.g. Lithium Niobate)

Create Optical Cavity with Lithium Niobate - choose length to set resonance frequency

Send light through optical resonator - measure phase shift

- i Phase shift depends on index of refraction -
measures time varying electric field

—

E
Lowest frequency set by absorption length of light (~km)

High frequency cut-off: Nyquist limit, response time of
crystal (> THz)
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Conclusions

1. Strong CP Problem requires

dynamical solution, strongly boosts
searches for QCD Axion

2. Exciting opportunities with nonlinear
optical elements



