19th Patras workshop on axions, WIMPs, and WISPs

astrophysical tests of dark matter across many scales

sownak.bose@durham.ac.uk

@Swnk16

17 September 2024

Sownak Bose

large-scale structure [~ 10⁹ light-years]

large-scale structure [~ 10⁹ light-years]

dark matter haloes [~ 10⁶ light-years]

large-scale structure [~ 10⁹ light-years]

dark matter haloes [~ 10⁶ light-years]

galaxies [~ 10³ light-years]

large-scale structure [~ 10⁹ light-years]

dark matter haloes [~ 10⁶ light-years]

galaxies [~ 10³ light-years] star formation sites [~ light-years]

the role of cosmological simulations

CfA Galaxy Redshift survey

Klypin & Shandarin (1983); 32³ simulation particles

the emergence of cold dark matter

CDM simulation 1

Davis+ (1985); 32³ simulation particles

(c)

CDM simulation 2

CfA Redshift Survey Davis, Huchra, Latham & Tonry (1982) **Geller & Huchra (1983)**

~ 512x larger computational volume ~ 300,000x more resolution elements (2160³ DM particles)

~ 512x larger computational volume ~ 300,000x more resolution elements (2160³ DM particles)

$\log M_{\star} = 9.43$ SFR = 3.5 M_{\odot} yr⁻¹

$\log M_{\star} = 9.43$ SFR = 3.5 M_{\odot} yr⁻¹

the IllustrisTNG collaboration

observed galaxy population [SDSS and 2dF surveys]

0.05

0.15 10

11

Springel+ (2005) the Millennium simulation

- 05

234

GI

Ashin

20.75

prediction of the ΛCDM model

epoch

today

individual galaxies

ial scale

large-scale structure of the universe

hooda

today

individual galaxies

hooda

today

individual galaxies

(establishing ΛCDM)

cosmic microwave background radiation

Tegmark+ (2004)

solid curve: ACDM prediction symbols: data from multi-scale probes

Tegmark+ (2004)

solid curve: ACDM prediction symbols: data from multi-scale probes

this is the regime where we have most freedom to experiment with DM phenomenology:

dwarf galaxies

spatial scale [h Mpc⁻¹]

sterile neutrinos warm dark matter

[Dodelson & Widrow (1994); Abazajian+ (2001); Dolgov & Hansen (2002); Asaka & Shaposhnikov (2005); **Boyarsky+ (2009)**]

(~ keV mass)

sterile neutrinos warm dark matter (~ keV mass)

[Dodelson & Widrow (1994); Abazajian+ (2001); Dolgov & Hansen (2002); Asaka & Shaposhnikov (2005); **Boyarsky+ (2009)**]

the power spectrum of structures

large scales

small scales k [Mpc⁻¹]

the power spectrum of structures

large scales

small scales k [Mpc⁻¹]

Bose, Hellwing+ (2016) [arXiv: 1507.01998]

3.011bn yrs 2.5 ago 2.00 1.58bn yrs 1.0 ago "hierarchical" structure 0.5formation today $0.0L_{10^7}$ 10^{8} 10^{10} 10^{11} 10^{9} halo mass $[M_{\odot}]$

formation time

cold dark matter

movie: Mark Lovell

warm dark matter

cold dark matter

movie: Mark Lovell

warm dark matter

is it as simple as counting the number of satellite galaxies we observe orbiting the Milky Way?

cold dark matte

movie: Mark Lovell

is it as simple as counting the number of satellite galaxies we observe orbiting the Milky Way? Yes! ... and no.

[Maccio & Fontanot (2010); Polisensky & Ricotti (2011); Lovell+ (2012); Nierenberg+ (2013)]

movie: Mark Lovell

Dark matter

the APOSTLE Project [Fattahi+ (2016); Sawala+ (2016)]

the APOSTLE Project [Fattahi+ (2016); Sawala+ (2016)]

Kennedy+ (2014) Bose, Frenk+ (2017) [arXiv: 1604.07409]

challenge: there is significant degeneracy between the particle nature of the dark matter, and our imperfect knowledge of how heavy the Milky Way is, how galaxy formation works etc.

Newton+ (2024)

different total estimates for # of satellites around the Milky Way

> these constraints all assume that sterile neutrinos make up 100% of the DM in the universe. different groups approach this seemingly straightforward problem in slightly different ways — yet, these lead to disagreement about how much of the sterile neutrino parameter space is ruled out!
can we image dark matter structures directly?

can we image dark matter structures directly?

yes

www.eso.org

https://www.youtube.com/watch?v=GPfUdpBe6j0

www.eso.org

https://www.youtube.com/watch?v=GPfUdpBe6j0

using gravitational lensing to image dark matter

Data

"lumpiness" in a smooth matter distribution = DM substructure??

can use simulations of "different universes" to predict what these systems would look like in each

more suppressed small-scale structure

$$M_{\rm hm} = 10^{5.4} \,\mathrm{M_{\odot}}$$

[see also Li+ (2016); Nierenberg+ (2017); Birrer+ (2017); Despali+ (2020)]

 $M_{\rm hm} = 10^{7.2} \,{\rm M}_{\odot}$

Gilman+ (2020)

ore suppressed small-scale structure

hooda

today

individual galaxies

(establishing ΛCDM)

cosmic microwave background radiation

hooda

today

(probing power spectrum cutoff)

satellite galaxies and gravitational strong lensing

individual galaxies

(establishing Λ CDM)

cosmic microwave background radiation

more exotic small-scale behaviour [interacting dark matter]

[Carlson+ (1992); Boehm+ (2002); Ackerman+ (2009); Cyr-Racine & Sigurdson (2013); Bringmann+ (2016)]

more exotic small-scale behaviour [interacting]dark matter]

tight coupling between the dark matter and a relativistic species at early times

[Carlson+ (1992); Boehm+ (2002); Ackerman+ (2009); Cyr-Racine & Sigurdson (2013); Bringmann+ (2016)]

log [power spectrum

phenomenology of a cutoff in the power spectrum

- delayed structure formation
- faster galaxy assembly than in CDM
- abundance of faint galaxies is reduced

• at fixed halo mass, galaxies are brighter in their luminosity than in CDM

phenomenology of a cutoff in the power spectrum

- delayed structure formation
- faster galaxy assembly than in CDM
- abundance of faint galaxies is reduced

are signatures of "dark acoustic oscillations" imprinted in the galaxy distribution in an observable way?

• at fixed halo mass, galaxies are brighter in their luminosity than in CDM

problem: the distribution of galaxies looks identical in an iDM universe as in a WDM universe

[see also Buckley+ (2014); Vogelsberger+ (2014)] **Bose, Vogelsberger+ (2019c)** [arXiv: 1811.10630]

no.

clustering of DM relative to CDM

log [scale / h cMpc⁻¹]

[see also Buckley+ (2014); Vogelsberger+ (2014)]

log [scale / h cMpc⁻¹]

[see also Buckley+ (2014); Vogelsberger+ (2014)]

solution: probing structure in the early universe with the Lyman-alpha forest

[Viel+ (2005); Seljak+ (2006); Viel+ (2013); Baur+ (2016); Irsic+ (2017); Kobayashi+ (2017); Murgia+ (2018); Nori+ (2018); Garzilli+ (2018)]

Bose, Vogelsberger+ (2019) [arXiv: 1811.10630]

Bose+ (2019) [arXiv: 1811.10630]

Bose+ (2019) [arXiv: 1811.10630]

Bose+ (2019) [arXiv: 1811.10630]

Bose+ (2019) [arXiv: 1811.10630

the neutral intergalactic medium retains memory of the initial conditions of the cosmos long after they have been "forgotten" by galaxies

Bose+ (2019) [arXiv: 1811.10630

the neutral intergalactic medium retains memory of the initial conditions of the cosmos long after they have been "forgotten" by galaxies

(rule out power spectrum cutoff?)

JWST observations

(probing power spectrum cutoff)

satellite galaxies and gravitational strong lensing

individual galaxies

e poch

today

(establishing Λ CDM)

cosmic microwave background radiation

(rule out power spectrum cutoff?)

JWST observations

(probing power spectrum cutoff)

satellite galaxies and gravitational strong lensing

individual galaxies

hooda

today

thermal relic DM mass

 10^{14}

 10^1

half-mode mass scale

joint constraints—using different probes that exhibit different systematics—offer the best promise for setting limits on the small-scale cutoff in the initial power spectrum

Enzi+ (2021)

the early universe may offer some of the strongest tests of dark matter

what can we do besides counting galaxies?

Cosmic Explorer technical report CE-P2100003-v7 (2021)

abundance of DM haloes relative to CDM

DM halo mass [${
m M}_{\odot}$]

lower interaction strength —> closer to CDM

Mosbech, Jenkins, SB+ [2023, arXiv: 2207.14126]
of DM haloes e to CDM relative abundance

DM halo mass [M_{\odot}]

lower interaction strength —> closer to CDM

Mosbech, Jenkins, SB+ [2023, arXiv: 2207.14126]

goal: generate "realistic" galaxy population for each model at present day and predict their BBH merger rates in the past. in extreme models, this calibration is not possible no matter what you do with astrophysics

merger rates are substantially lower in iDM models at early times, but "catch up" towards present day — a generic feature of models with a primordial suppression of small-scale power

are these differences observable using future GW observatories?

merger rates are substantially lower in iDM models at early times, but "catch up" towards present day — a generic feature of models with a primordial suppression of small-scale power

 z_*

- it's always worthwhile thinking about well-motivated alternatives to the standard paradigm
- for a large class of models, which may originate from very different particle physics mechanisms, the astrophysical phenomenology is very similar
- this makes it important to setup targeted campaigns that identify physical scales associated with these theories
- for constraining the cutoff scale (if there is one): early generations of galaxies, faint galaxies and probes that image the dark matter directly (e.g. strong lensing). for features that may be otherwise lost in the matter field: Lyman-alpha forest
- for constraints on the (self-)interaction cross-section of DM: kinematics of galaxies, inferences of dwarf/ cluster density profiles
- there are exciting prospects involving future observatories (e.g. intensity mapping, GW detections) that provide a statistical inference of the mass function of DM haloes, below the scales accessible to galaxy surveys

