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the role of cosmological 
simulations
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Klypin & Shandarin (1983); 323 simulation particles

CfA Galaxy Redshift survey

“hot” dark matter



the emergence of cold dark matter

CDM simulation 1 CDM simulation 2

Davis+ (1985); 323 simulation particles

CfA Redshift Survey
Davis, Huchra, Latham & Tonry (1982) 
Geller & Huchra (1983)



~ 512x larger computational volume 
~ 300,000x more resolution elements (21603 DM particles)



~ 512x larger computational volume 
~ 300,000x more resolution elements (21603 DM particles)







the IllustrisTNG collaboration 



observed galaxy 
population 

[SDSS and 2dF surveys]

prediction of the CDM 
model  

Λ

Springel+ (2005) 
the Millennium simulation
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this is the regime 
where we have most 

freedom to 
experiment with DM 

phenomenology:
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Tegmark+ (2004)
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dwarf galaxies

solid curve: CDM prediction 
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sterile neutrinos 
[warm dark matter]

(~ keV mass)

[Dodelson & Widrow (1994); Abazajian+ (2001); Dolgov & Hansen (2002); Asaka & Shaposhnikov (2005); 
Boyarsky+ (2009)]
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the power spectrum of structures
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below a characteristic scale, 
halo formation is delayed 

relative to CDM

differences driven by this 
feature

Bose, Hellwing+ (2016) [arXiv: 
1507.01998]

“hierarchical" structure 
formation 

today

8bn yrs 
ago

11bn yrs 
ago
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cold dark matter warm dark matter

movie: Mark Lovell

is it as simple as counting the number of satellite galaxies we observe 
orbiting the Milky Way? Yes! … and no.

[Maccio & Fontanot (2010); Polisensky & Ricotti (2011); Lovell+ (2012); Nierenberg+ (2013)]
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the APOSTLE Project 
[Fattahi+ (2016); Sawala+ (2016)]



Kennedy+ (2014) 
Bose, Frenk+ (2017) [arXiv: 1604.07409]

fewer satellite galaxies
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challenge: there is 
significant degeneracy 
between the particle 

nature of the dark 
matter, and our 

imperfect knowledge 
of how heavy the Milky 

Way is, how galaxy 
formation works etc. 
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sterile neutrino mass [keV]

} different total estimates for # of 
satellites around the Milky Way

Newton+ (2024)

these constraints all assume that 
sterile neutrinos make up 100% 

of the DM in the universe. 
different groups approach this 

seemingly straightforward 
problem in slightly different ways 
— yet, these lead to disagreement 

about how much of the sterile 
neutrino parameter space is ruled 

out!



can we image dark matter 
structures directly?



can we image dark matter 
structures directly?

yes!



https://www.youtube.com/watch?v=GPfUdpBe6j0



https://www.youtube.com/watch?v=GPfUdpBe6j0



“lumpiness” in a 
smooth matter distribution 

= DM substructure??

using gravitational lensing to image dark matter 

can use simulations of “different 
universes” to predict what these systems 

would look like 
in each

Vegetti & Koopmans (2009)
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Gilman+ (2020)

more suppressed small-scale structure



Mhm = 105.4 M⊙ Mhm = 107.2 M⊙

[see also Li+ (2016); Nierenberg+ (2017); Birrer+ (2017); Despali+ (2020)]

Gilman+ (2020)

more suppressed small-scale structure

Euclid [2023—]

LSST/VRO [~2025]
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more exotic small-scale behaviour 
[interacting dark matter]

tight coupling between the dark matter and a relativistic species at early times

[Carlson+ (1992); Boehm+ (2002); Ackerman+ (2009); Cyr-Racine & Sigurdson (2013); 
Bringmann+ (2016)]
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• delayed structure formation 

• faster galaxy assembly than in CDM 

• abundance of faint galaxies is reduced 

• at fixed halo mass, galaxies are brighter in their luminosity than in CDM

phenomenology of a cutoff in the power spectrum



• delayed structure formation 

• faster galaxy assembly than in CDM 

• abundance of faint galaxies is reduced 

• at fixed halo mass, galaxies are brighter in their luminosity than in CDM

phenomenology of a cutoff in the power spectrum

are signatures of “dark acoustic oscillations” imprinted in the galaxy distribution in an 
observable way?



no.



no.

[see also Buckley+ (2014); Vogelsberger+ (2014)]Bose, Vogelsberger+ (2019c) [arXiv: 1811.10630]

problem: the distribution of galaxies looks identical in an iDM universe as in a WDM universe
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qualitatively indistinguishable from WDM thereafter.
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many epochs of gravitational evolution wash away any memory of 
primordial dark acoustic oscillations — even by z = 6.

[see also Buckley+ (2014); Vogelsberger+ (2014)]

log [ scale / h cMpc-1 ]



solution: probing structure in the early universe
with the Lyman-alpha forest

[Viel+ (2005); Seljak+ (2006); Viel+ (2013); Baur+ (2016); Irsic+ (2017); Kobayashi+ (2017); Murgia+ 
(2018); Nori+ (2018); Garzilli+ (2018)]







repeat this for ~1000s of lines-of-sight to develop a statistical map of neutral 
hydrogen in the early universe



Bose, Vogelsberger+ (2019) [arXiv: 1811.10630]

Gas distribution in 
simulations with dark 
matter and baryons

[the universe is ~ 1 billion years old]



time evolution of the Lyman-alpha forest

Bose+ (2019) [arXiv: 
1811.10630]
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time evolution of the Lyman-alpha forest

Bose+ (2019) [arXiv: 
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~ present data 

goes down to here
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Lyman-alpha forest

(probing DM-dark sector interactions)



joint constraints—using 
different probes that 

exhibit different 
systematics—offer the 

best promise for setting 
limits on the small-scale 

cutoff in the initial 
power spectrum 

Enzi+ (2021)

thermal relic DM mass 

half-mode mass scale



the early universe may offer some of the 
strongest tests of dark matter

what can we do besides counting galaxies?



LISA



LISA
the merger rate of BHs is an (indirect) 
tracer of the merger rate of galaxies 

Cosmic Explorer technical report CE-P2100003-v7 (2021)



Mosbech, Jenkins, SB+ 
[2023, arXiv: 2207.14126]
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brightness of galaxy

goal: generate 
“realistic” galaxy 

population for each 
model at present day 
and predict their BBH 

merger rates in the past. 
in extreme models, this 

calibration is not 
possible no matter what 

you do with 
astrophysics  
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models with a 
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are these differences observable using future GW observatories?

merger rates are 
substantially lower 
in iDM models at 
early times, but 

“catch up” towards 
present day — a 

generic feature of 
models with a 

primordial 
suppression of 

small-scale power
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summary
•it’s always worthwhile thinking about well-motivated alternatives to the standard paradigm 

•for a large class of models, which may originate from very different particle physics mechanisms, the 
astrophysical phenomenology is very similar 

•this makes it important to setup targeted campaigns that identify physical scales associated with these theories 

•for constraining the cutoff scale (if there is one): early generations of galaxies, faint galaxies and probes that 
image the dark matter directly (e.g. strong lensing). for features that may be otherwise lost in the matter field: 
Lyman-alpha forest 

•for constraints on the (self-)interaction cross-section of DM: kinematics of galaxies, inferences of dwarf/
cluster density profiles 

•there are exciting prospects involving future observatories (e.g. intensity mapping, GW detections) that 
provide a statistical inference of the mass function of DM haloes, below the scales accessible to galaxy surveys


