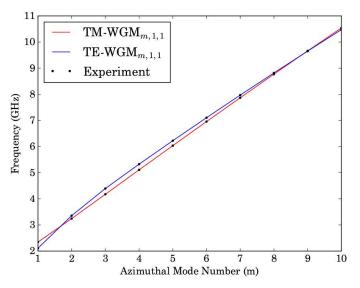
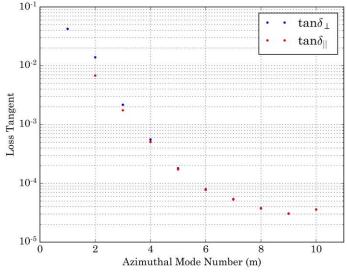
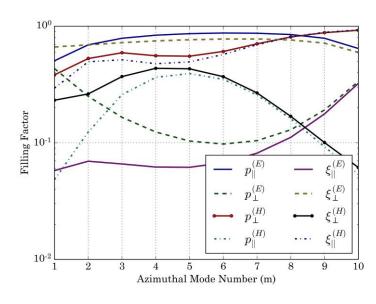
Precision Multi-mode Microwave Characterisation of Single Crystal Calcium Tungstate for Dark Matter Searches

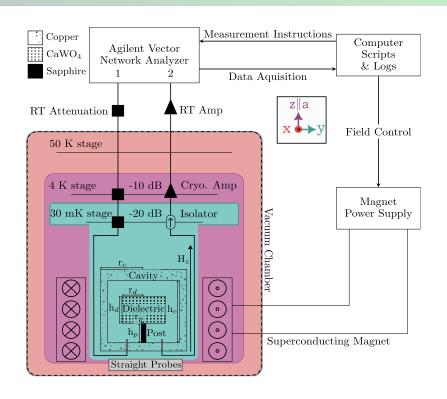
Elrina Hartman

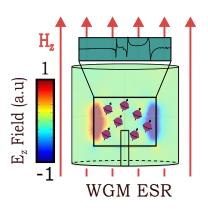

Supervisors: Michael Tobar, Maxim Goryachev, Ben McAllister

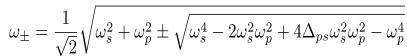

Dielectric Characterisation

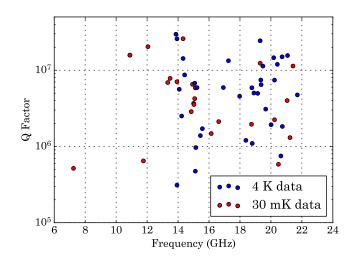

Permittivity at room temperature:

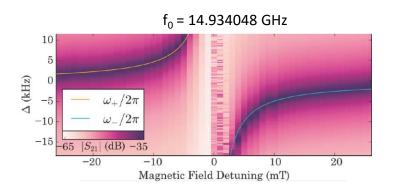
 $\varepsilon_{\parallel} = 9.0249 \pm 0.0005$


 ε_{\perp} = 10.737±0.0005

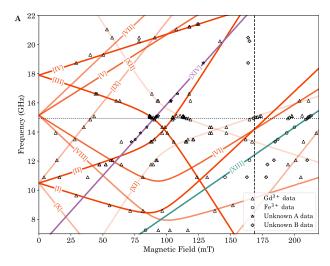


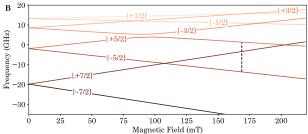

ESR Spectroscopy Methods





Dimensions of dielectrically loaded cavity resonator:


 $r_c = 25 \text{ mm}, h_c = 40 \text{ mm}$ $r_d = 14.98 \text{ mm}, h_d = 20 \text{ m}$ $r_c = 1.75 \text{ mm}, h_c = 14.5 \text{ mn}$



ESR Spectroscopy Results

Species	ΔS_z	Line	ZFS Transition
			(GHz)
$CaWO_4:Gd^{3+}$	1	I	$10.49 \begin{vmatrix} +5/2 \rangle \rightarrow +3/2 \rangle \\ -5/2 \rangle \rightarrow -3/2 \rangle$
$g_L = 1.99$		II	
		III	17.90 $\begin{vmatrix} +7/2 \rangle \rightarrow +5/2 \rangle \\ -7/2 \rangle \rightarrow -5/2 \rangle \end{vmatrix}$
		IV	$ -7/2\rangle \rightarrow -5/2\rangle$
	2	V	$15.14 \mid -5/2 \rangle \rightarrow \mid -1/2 \rangle$
		VI	
	3	VII	$15.14 \begin{vmatrix} -5/2 \\ -5/2 \end{vmatrix} \rightarrow \begin{vmatrix} +1/2 \\ -1/2 \end{vmatrix}$
		VIII	$1 \pm i $ $1 + i $
	4	IX	$10.49 \begin{vmatrix} -5/2 \\ -5/2 \end{vmatrix} \rightarrow \begin{vmatrix} +3/2 \\ -5/2 \end{vmatrix}$
	_	X	$ +3/2\rangle \rightarrow -3/2\rangle$
	5	XI	$0.0 -5/2\rangle \rightarrow +5/2\rangle$
		XII	$28.33 \mid +7/2 \rangle \rightarrow \mid -3/2$
CaWO ₄ :Fe ³⁺			
$g_L = 4.3$	-	XIII	2.20 -
	•		
Unknown A	-	XIV	6.10 -
$g_L = 7$			

TABLE I. Properties of spin transitions calculated from the multi-mode spectroscopy results. Here, ΔS_z is the change in spin quantum number.

$$g = g_L \mu_B \sqrt{\frac{\mu_0 \omega_p n \xi_\perp}{4\hbar}}$$

where;

 g_L is the Landé g factor, μ_B is the Bohr Magneton, \hbar is the reduced Planck's constant, ξ_{\perp} is the perpendicular magnetic filling factor, and μ_0 is the permeability of free space.

 $n = 8.28 \pm 1.24 \times 10^{13} \text{ cm}^{-3}$ which is on the order of ppb.

$$\mathcal{H} = g_L \mu_B H_z S_z + B_2^0 O_2^0 + B_4^0 O_4^0 + B_4^4 O_4^4 + B_6^0 O_6^0 + B_6^4 O_6^4$$