ADMX-VERA: A large volume haloscope for higher axion frequencies

Andrew K. Yi on behalf of the ADMX-VERA experiment **SLAC National Accelerator Laboratory**

Haloscopes for higher frequencies

$$\frac{d\nu}{dt} \propto B_0^4 V^2 C^2 Q_L T_{\rm sys}^{-2} \left(\frac{\beta}{1+\beta}\right)^2$$

The volume of cylindrical cavities at high frequencies becomes smaller, making QCD-axionsensitive high-frequency axion searches difficult

Resonant frequency 2.3 [GHz] $\nu =$ *d* [mm]/100

ADMX-VERA cavities with high volumes

dv $\propto V^2$ \overline{dt} n = 169

Single and triple wedge cavity [2] resonant frequencies depend only on the width of the volume space

Multiple-cell beehive cavity that share the resonant

Advantages of ADMX-VERA cavities

Cavity-based figure of merit for multiple experiments

Challenges of the thin shell cavity

Summing trees can coherently add signals through impedance matching from multiple slot antennas

(Used in CMB experiments before [4], but will be the first time in axion searches) Basic summing tree structure for eight slot antennas

Quantum sensors

parametric amplifiers (KI-TWPAs)

Single microwave photon counting devices (SMPDs)

Current progress and discovery potential

Data taken for warm single-wedge cavity dark photon search and now in analysis phase

Cyrogenic single-wedge cavity characterization is also in progress

1 <u>https://cajohare.github.io/AxionLimits/</u>

[2] T. Dyson et al., Phys. Rev. Applied 21, L041002 / Triple Wedge work done by Sephora Ruppert [3] Matthew O. Withers and Chao-Lin Kuo, arXiv:2404.06627 Chao-Lin Kuo et al., Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, 7020, 415–428. SPIE, (2008) [5] Klimovich, Nikita Sergeevich (2022) Traveling Wave Parametric Amplifiers and Other Nonlinear Kinetic Inductance Devices. Andrew Yi and the development of summing trees for ADMX-VERA were supported by the Department of Dissertation (Ph.D.), California Institute of Technology Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, [6] C. Braggio et al., arXiv:2403.02321 under contract DE-AC02-76SF00515 and as part of the Panofsky Fellowship awarded to Chelsea Bartram.