Single-Photon Detection for Axion Haloscopes with RAY

Reina Maruyama, on behalf of Eleanor Graham & RAY Yale University

19th Patras Workshop on Axions, WIMPs, and WISPs, Patras, Greece September 17, 2024

Wright
Laboratory Yale

<https://cajohare.github.io/AxionLimits/>

Axion Searches at Yale

Haysta c \nless

See Xiran Bai, Wed. 11:30 Max Silva-Feaver

arXiv:2409.08998

ex alpha

https://axion-dm.yale.edu/

3

Yale

When they go low, we go high **And Obama**

- Post-inflation scenarios point to higher masses
- $HAYSTAC:$ Innovation testbed for axion searches > 10 µeV (~2.5 GHz)
- Challenges:
	- Photon detection, noise

• Scan rate:
$$
V \propto v^{-2}
$$
, $\frac{dv}{dt} \propto V^2$, $\frac{dv}{dt} \propto v^{-4}$

Borsanyi et al (2016) PQ symmetry broken after inflation: ma > 10 μeV Klaer & Moore (2017); 26.2 ± 3.4 μeV

Buschmann, et al. (2022): 40 μeV [65 ± 6 μeV, q=1; scale invariant spectrum]

4 * In $\Omega_A \sim f_A \alpha$, the best fit $\alpha = 1.24$ $+0.04$ Rather than analytical 1.187

When they go low, we go high **And Obama**

- Post-inflation scenarios point to higher masses
- HAYSTAC: Innovation testbed for axion searches > 10 µeV (\sim 2.5 GHz)

Quantum Measurement Noise in Haloscopes

Zero-point fluctuations in signal amplitude (uncertainty principle)

Noise from linear amplifier

+

The Standard Quantum Limit (SQL)

=

 $(N_{\rm SOI} = 1)$

Traditional linear receiver: minimum noise limited by SQL

HAYSTAC squeezed-state receiver: 4 dB squeezing **→** 2x enhancement relative to SQL-limited axion search

Single-photon detector: equivalent to infinite squeezing, zero measurement noise contribution

Single-Photon Detection for Haloscopes

Best conditions for single-photon detector:

- Cavity bandwidth approaches axion bandwidth
- Thermal background in cavity n_T is small (reduce temperature, increase frequency)

Crossover point where single-photon detector outperforms linear receiver: ~ 10 GHz.

"click" "click" "click"

Scan Rate Enhancement: Single-Photon Detectors

Total enhancement:

$$
E \approx \frac{Q_{\text{conv}}}{Q_a} \frac{\Delta \nu_a}{R_{\text{sig}} + R_T + R_{\text{RO}}}
$$

- $10⁴$ enhancement over linear amp.
- Increase enhancement factor by increasing Q_{conv} to Q_{a}
- Enhancement largest w/ negligible thermal noise
- Ultimately limited by shot noise

PRD 109, 032009 (2024)

Single Photons: Axion Sensitivity - 5 years

Building a Microwave Single-Photon Detector

Achieve the required sensitivity by coupling to a quantum system:

Rydberg atoms: Flexible operating frequency, built-in tuning mechanism.

Rydberg Atom-based Single Photon Detection

RAY Axion Search Concept

Detection sequence:

- 1. Axion-photon conversion in magnetic field
- 2. Photon transported away from magnetic field into detection cavity
- 3. Rydberg atom couples to photon in detection cavity
- 4. Ionization readout of Rydberg atom was a photon detected?

Frequency Tuning

Absorption Emission

Three ways of tuning transition frequency:

- 1. Vary n of starting state
- 2. Vary type of transition
- 3. Apply magnetic or electric field (Zeeman or Stark tuning)

Zeeman tuning field: \sim 100 G tuning range: \sim 100 MHz

Solution: use different states / 13

Frequency Coverage with Rydberg Atoms

Atom Choice: K vs Rb

Polarizability:

K is less sensitive to stray electric fields compared to Rb

Why do we care?

Stray E fields in the detection cavity can interfere with atom-photon coupling (observed by CARRACK)

Preparing Rydberg Atoms

[Y. Zhu, S. Ghosh, S. B. Cahn, M. J. Jewell, D. H. Speller, RHM ,](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.042808) [PRA 105, 042808 \(2022\).](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.042808)

Atom Beam: 2D MOT

Photon Detection Cavity:

Requirements:

- High quality factor $Q > 10^6$
- Mode volume \sim 0.1 λ ³
- Way for atoms to enter cavity

[Kumar et al., Nature 615 614-619 \(2023\)](https://www.nature.com/articles/s41586-023-05740-2)

[Suleymanzade et al, Appl. Phys. Lett. 116, 104001 \(2020\)](https://doi.org/10.1063/1.5137900)

Detecting Ionized Electrons: Selective Field Ionization

Ionization Detection of Rydberg Atoms

State Readout: SNSPDs for Electron Detection

RAY's electron detector will need to be **cryocompatible**, **high-efficiency**, and **low-darkcount**.

⁽Stewart Koppell)

We are collaborating with the Berggren group at MIT to develop electron-sensitive Superconducting Nanowire Single Photon Detectors (SNSPDs) for RAY.

RAY: Rydberg/Axions at Yale

Prof. Reina Maruyama (PI) Prof. Charles Brown (Yale) Prof. Danielle Speller (JHU) Dr. Mike Jewell Dr. Sabrina Zacarias Benjia Li

Eleanor Graham

Xiran Bai Eunice Beato

Building a microwave single-photon detector for dark matter searches.

Conclusions

- New results and exciting developments for dark matter searches
- Developments in and out of Axion world
	- ‣ Rapid advances in quantum science
	- ‣ new experiments, new parameter space
	- · New ideas, new people, new discovery
- Compelling case for axions at higher masses
- Rydberg atoms offer possibility to extend search to high mass

