Single-Photon Detection for Axion Haloscopes with RAY

Reina Maruyama, on behalf of Eleanor Graham & RAY Yale University

19th Patras Workshop on Axions, WIMPs, and WISPs, Patras, Greece September 17, 2024

Yale

Wright Laboratory

Axion Searches at Yale

Haysta**c**

See Xiran Bai, Wed. 11:30

arXiv:2409.08998

https://axion-dm.yale.edu/

Yale

PRD 109, 032009 (2024)

When they go low, we go high -M. Obama

- Post-inflation scenarios point to higher masses
- HAYSTAC: Innovation testbed for axion searches > 10 μ eV (~2.5 GHz)
- Challenges:
 - Photon detection, noise

• Scan rate:
$$V \propto v^{-2}$$
, $\frac{dv}{dt} \propto V^2$, $\frac{dv}{dt} \propto v^{-4}$

Borsanyi et al (2016) PQ symmetry broken after inflation: $m_a > 10 \ \mu eV$ Klaer & Moore (2017); 26.2 ± 3.4 μeV

Buschmann, et al. (2022): 40 µeV [65 ± 6 µeV, q=1; scale invariant spectrum]

* In $\Omega_A \sim f_A^{\alpha}$, the best fit $\alpha = 1.24$ ± 0.04 Rather than analytical 1.187

When they go low, we go high -M. Obama

- Post-inflation scenarios point to higher masses
- HAYSTAC: Innovation testbed for axion searches > 10 μeV (~2.5 GHz)

Quantum Measurement Noise in Haloscopes

Zero-point fluctuations in signal amplitude (uncertainty principle)

Noise from linear amplifier

The Standard Quantum Limit (SQL)

 $(N_{SQL} = 1)$

Traditional linear receiver: minimum noise limited by SQL

HAYSTAC squeezed-state receiver: 4 dB squeezing \rightarrow 2x enhancement relative to SQL-limited axion search

Single-photon detector: equivalent to infinite squeezing, zero measurement noise contribution

Single-Photon Detection for Haloscopes

Best conditions for single-photon detector:

- Cavity bandwidth approaches axion bandwidth
- Thermal background in cavity n_T is small (reduce temperature, increase frequency)

Crossover point where single-photon detector outperforms linear receiver: ~ 10 GHz.

[&]quot;click" "click" "click"

Scan Rate Enhancement: Single-Photon Detectors

Total enhancement:

$$E \approx \frac{Q_{\rm conv}}{Q_a} \frac{\Delta \nu_a}{R_{\rm sig} + R_T + R_{\rm RO}}$$

- 10⁴ enhancement over linear amp.
- Increase enhancement factor by increasing Q_{conv} to Q_a
- Enhancement largest w/ negligible thermal noise
- Ultimately limited by shot noise

PRD 109, 032009 (2024)

Single Photons: Axion Sensitivity - 5 years

Building a Microwave Single-Photon Detector

Achieve the required sensitivity by coupling to a quantum system:

Rydberg atoms: Flexible operating frequency, built-in tuning mechanism.

Rydberg Atom-based Single Photon Detection

RAY Axion Search Concept

Detection sequence:

- 1. Axion-photon conversion in magnetic field
- 2. Photon transported away from magnetic field into detection cavity
- 3. Rydberg atom couples to photon in detection cavity
- 4. Ionization readout of Rydberg atom was a photon detected?

Frequency Tuning

Absorption

Emission

Three ways of tuning transition frequency:

- 1. Vary n of starting state
- 2. Vary type of transition
- 3. Apply magnetic or electric field (Zeeman or Stark tuning)

Zeeman tuning field: ~ 100 G tuning range: ~ 100 MHz

Solution: use different states 13

Frequency Coverage with Rydberg Atoms

Atom Choice: K vs Rb

Polarizability:

K is less sensitive to stray electric fields compared to Rb

Why do we care?

Stray E fields in the detection cavity can interfere with atom-photon coupling (observed by CARRACK)

Preparing Rydberg Atoms

Y. Zhu, S. Ghosh, S. B. Cahn, M. J. Jewell, D. H. Speller, RHM , PRA 105, 042808 (2022).

Atom Beam: 2D MOT

Photon Detection Cavity:

Requirements:

- High quality factor $Q > 10^6$
- Mode volume ~ 0.1 λ^3
- Way for atoms to enter cavity

Suleymanzade et al, Appl. Phys. Lett. 116, 104001 (2020)

Kumar et al., Nature 615 614-619 (2023)

	Туре	ν (GHz)	$V\left(\lambda^3 ight)$	Q	Atom coupling
	Coplanar waveguide resonator [82]	19.6	$\sim 10^-6$	$2.3 imes 10^3$	yes, Rydberg He beam
Superconducting coplanar waveguide resonator [83]		2.9 - 5	$\sim 10^-6$	$3 imes 10^5$	not demonstrated
Superconducting rectangular/cylindrical cavity [84]		7.7–11.4	0.1	$10^6 - 10^8$	not demonstrated
	Fabry-Perot cavity [85]	51	260	$4.2 imes 10^{10}$	yes, Rydberg Rb beam
	Superconducting seamless cavity [86, 87]	98.2	0.14	3×10^7	yes, trapped Rydberg Rb

Detecting Ionized Electrons: Selective Field Ionization

Ionization Detection of Rydberg Atoms

State Readout: SNSPDs for Electron Detection

RAY's electron detector will need to be **cryocompatible**, **high-efficiency**, and **low-darkcount**.

⁽Stewart Koppell)

We are collaborating with the Berggren group at MIT to develop electron-sensitive Superconducting Nanowire Single Photon Detectors (SNSPDs) for RAY.

RAY: Rydberg/Axions at Yale

Prof. Reina Maruyama (PI)
Prof. Charles Brown (Yale)
Prof. Danielle Speller (JHU)
Dr. Mike Jewell
Dr. Sabrina Zacarias
Benjia Li

Eleanor Graham

Xiran Bai Eunice Beato

Building a microwave single-photon detector for dark matter searches.

Conclusions

- New results and exciting developments for dark matter searches
- Developments in and out of Axion world
 - Rapid advances in quantum science
 - new experiments, new parameter space
 - New ideas, new people, new discovery
- Compelling case for axions at higher masses
- Rydberg atoms offer possibility to extend search to high mass

