

Entering the Neutrino Fog

First Measurement of Solar Neutrinos via CEvNS in XENONnT

19th Patras Workshop on Axions WIMPs and WISPs 17.09.2024

XENONnT Solar ⁸B CEvNS Search Results

- ❖ ⁸B neutrinos measured via CEvNS at **2.73σ**.
- ❖ **FIRST** detected astrophysical v in a dark matter detector.
- ❖ **FIRST** measured CEvNS from astrophysical v source.
- ❖ **FIRST** measured CEvNS with a xenon target.

2 Matteo Guida | 19th Patras Workshop on Axions WIMPs and WISPs | 17.09.2024

The XENONnT Experiment

❖ **S1 SIGNAL**

prompt scintillation photons.

❖ **S2 SIGNAL**

secondary scintillation photons from electroluminescence in gaseous xenon (GXe) due to drifted electrons.

❖ **3D VERTEX RECONSTRUCTION**

X,Y: S2 hit pattern in the top PMT array. **Z**: drift time S2-S1.

❖ **ENERGY RECONSTRUCTION**

from combined S1 and S2 signals.

Recoil Type Discrimination

Recoil type discrimination S1/S2 ratio depends on dE/dx.

XENONnT Timeline

❖ Stable detector response: achieving <1% (<3%) variation in light (charge) yield.

XENON

- ❖ Electron lifetime excellence ≈ 20ms.
- ❖ **Radon suppression milestone**: distillation with combined gaseous and liquid xenon flow.

²²²Rn ER background is pushed to record-low levels $<$ 1 μ Bq kg^{-1} .

Physics Results So Far

New Physics Search in Electronic Recoils Data

 \div The XENON1T excess excluded at $\approx 4 \sigma$. Tiny tritium leak suspected in XENON1T. Tritium mitigation implemented in XENONnT.

❖ Record-low ER background: 15.8 events/(t y keV) in (1, 30) keV ROI.

IMPRS

for Precision Tests of ental Symmetries NATIONAL MAX PLANCE

[Phys. Rev. 482 Lett. 129, 161805 \(2022\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.161805)

XENON

WIMP Dark Matter Search

- \cdot Strongest limit for spin-independent WIMP-nucleon cross section: 2.6 × 10⁻⁴⁷ cm² at 28 GeV/c².
- ❖ Power-constrained limit (PCL) to median sensitivity: excluding only parameter space that the detector is sensitive to.
- ❖ The convention needs to be rediscussed within the community.

XENON

SOLAR ⁸B CEν**NS**

"high" cross section for v physics but low recoil energy $< 1.5 \text{ keV}_{\text{NR}}$.

- ❖ Flavour-independent process, exchange of a Z boson.
- ❖ Nuclear cross−section dependence

 σ CEvNS \propto N² $N \equiv$ neutrons

- ❖ **Never** measured in a xenon target.
- ❖ **Never** measured from astrophysical source.

- ❖ First measured by COHERENT (2017) from Spallation Neutron Source (SNS). Science ³⁵⁷ (2017) 6356, [1123-1126](https://www.science.org/doi/10.1126/science.aao0990)
- ❖ ⁸B CEνNS in XENONnT: 90% of events from the range [8.9, 13.7] MeV.

⁸⁸YBe Low Energy Nuclear Recoil Calibration

- ❖ First ⁸⁸YBe low-energy nuclear recoil (NR) calibration for 7 days using a external photoneutron source to get the lowenergy yields in the liquid xenon.
- ❖ Quasi-monoenergetic 152 keV neutrons are produced by photo-disintegration of 9 Be by the 1.84 MeV y-rays of the ⁸⁸Y.

 $y + {}^{9}Be \rightarrow n + {}^{8}Be$

❖ Challenging external calibration due to proximity to the detector threshold, high background rates, and low statistics.

Yield model with ⁸⁸YBe Calibration

- ❖ Great agreement between data and model.
- ❖ The same data-driven simulation pipeline for accidental coincidence, the largest background source, was applied uniformly across all science searches and calibrations.

❖ The Light Yield (LY) and Charge Yield (CY) were extracted down to 0.5 keV $_{NR}$ at XENONnT electric field of 23 V/cm.

XENON

 \dots Yield model uncertainty leads to \approx 30% signal rate uncertainty.

⁸B CEvNS: Signal Region of Interest

XENON

S1 ROI: **2** or **3 hits**

S1 hit: photon hitting the PMT and recorded by DAQ and software.

S2 ROI: [**120 – 500**] **PE**

120 PE used to reject high isolated S2 background below it.

Lowering the Energy Threshold

❖ Relaxed the S1 waveform shape requirement from conventional analysis:

XENON

- 3-fold \rightarrow 2-fold
- keeping AC background under control
- ❖ Lowered S2 threshold from conventional analysis 200 PE \rightarrow 120 PE.

Accidental Coincidence (AC) Background

XENON

Dominant background close to the threshold.

- ❖ Exact physical mechanisms of isolated peaks are under investigation.
	- "isolated S1 signals": from pileup-induced single PMT hits, misclassified single electrons, …
	- "isolated S2 signals": from few-electron pileup events, notably following high-energy (HE) interactions, …
- \triangleq Raw AC rate ≈ 400 per day
	- "Isolated" S1 \approx 15 Hz
	- "Isolated" S2 \approx 0.15 Hz
	- Max. drift time: 2.25 ms

14 Matteo Guida | 19th Patras Workshop on Axions WIMPs and WISPs | 17.09.2024

Reducing AC Background

Signal

S2 **Time shadow** → S2/Δt

- ❖ Further suppression by 2 Boosted Decision Tree (BDT):
	- **S2 BDT** \rightarrow check that S2 pulse shape correlated with the diffusion of the drifting electron cloud law. No correlation in AC background.
	- **S1 BDT** \rightarrow leverage S1 pulse and S1 spatial distribution across the PMT arrays to discriminate signal from isolated S1 signals induced by a random pileup of PMT hits.

 0.5

Validation of AC: AC-Sideband Unblinding

❖ AC model is datadriven → validation is crucial AC sideband (invert highest AC rejection power cuts)

- ❖ The S2 threshold is increased to 120 PE after sideband unblinding \rightarrow avoid mismodeling.
- ❖ The remaining differences propagate as **uncertainty** to the final likelihood:
	- SR0: 9%
	- SR1:6%

Discovery Potential

- ❖ Extended binned likelihood in 4D parameter space $3 \times 3 \times 3 \times 3 = 81$ bins.
- ❖ Separate terms for SR0 & SR1. Constraints on rates and yields from ancillary measurements.
- ❖ Expected background: 26.4 events Expected signal: 11.9 events

- ❖ Likelihood analysis:
	- $2σ: 80%$
	- \cdot > 3σ: 50%

Unblinding Results

Matteo Guida | 19th Patras Workshop on Axions WIMPs and WISPs | 17.09.2024

XENONnT: The Smallest "Solar" Neutrino Detector

EXENON

20

Physics Results

❖ ⁸B neutrino flux: $(4.7^{+3.6}_{-2.3}) \times 10^6$ cm⁻²s⁻¹ at 68% C.L. no tension with literature value

- ❖ With the solar 8B neutrino flux constrained by SNO σ_{CEvNS} measured.
- ❖ First measurement on xenon: consistent with the SM prediction.

21

Summary and Outlook

- ❖ **FIRST** detection with **blind analysis** of ⁸B solar neutrino CEvNS at **2.73σ**.
- ❖ **FIRST** observed astrophysical v in a dark matter detector.
- ❖ **FIRST** measured CEvNS with a Xe target.
- \cdot The unexplored WIMP parameter space is awaiting $-$ stay tuned!
- ❖ Reduced ER and NR background in new data: using GXe + LXe Rn distillation and neutron veto water Gd-doping.
- ❖ Much more **blinded data** collected!

BACKUP SLIDES

Matteo Guida | DARWIN Collaboration Meeting | 17.05.2023

23

❖ BDT trained using simulated signal and datadriven AC background, with each feature rigorously validated between data and simulation.

Matteo Guida | 19th Patras Workshop on Axions WIMPs and WISPs | 17.09.2024

- ❖ Waveform-feature-based S1 BDT differentiates isolated S1 signals from random PMT hit clustering.
- ❖ Input features: double photo-electron emission, S1 pulse shape, S1 hit counts, PMT channel distribution of S1.

S1 BDT

- ❖ Trained with a data-driven sample of isolated S1 and simulated ⁸B S1
- ❖ S1 area in the largest-contributing PMT is the most important feature due to the signal-only double photoelectron emission (DPE), where a single photon striking the PMT photocathode produces two photoelectrons with $p \approx 0.2$.
- ❖ Enhances signal vs. background discrimination but is significantly weaker than the S2 BDT.

❖ Light yield from 0.27 keV ER signal in ³⁷Ar SR0 calibration.

- ❖ Comparison with B8 analysis:
	- Similarity: expected signal predicts 2-3 S1 hits and dominated by AC background.
	- Difference: high statistics.
- ❖ Very good agreement: four-dimensional GOF test p-value of 0.92.

- ❖ Mostly good agreement with signal+bkg fit.
- ❖ Perform 4 x 1D goodness of fit tests (95% CL), 4 p-values with threshold: 0.0127
- \triangleq Quantile of S2/ $\Delta t \rightarrow p$ -value: 0.008
- ❖ Detailed inspections of both the individual events in the dataset and the AC sideband data indicate no mismodeling.
- statistical significance of 3.22 σ.
- ❖ Excluding S2/Δt from the statistical analysis would result in a

Power-Constrained Limits (PCL)

- \clubsuit Standard business: report an upper limit (UL) on signal strength μ for New Physics. Downward fluctuations and mismodeling (e.g., overestimated bkg rates) can lead to very low ULs.
- ❖ **Issue**: when the chance of rejecting a small signal hypothesis is nearly the same whether it is true or the bkgonly hypothesis is true \rightarrow lack meaningful discrimination between the signal + bkg and bkg-only hypotheses.
- ❖ **Goal**: only exclude the parameter space that the detector is sensitive to.
- \triangleq **Error in White Paper** (1): mistakenly defined PCL based on discovery power (probability to reject $\mu = 0$ if the true signal strength is μ) instead of rejection power (probability to reject μ if the true signal strength is μ). This caused an absence of a common standard.

❖ **Conventions to date**:

- LZ & PandaX-4T: rejection power which corresponds to -1σ of the quantile of the sensitivity band.
- XENONnT: rejection power which corresponds to median of the sensitivity band
- ❖ New recommendations are needed, intercollaboration discussion is ongoing.

28

Yield Uncertainty of Signal

 $(t_{\text{iv}}, t_{\text{av}})$ two morphers of the yields: uncertainties of the emission model

LY(t_{ly}) = $\langle LY \rangle + t_{ly} \cdot \sigma_{LY}(\text{sign}(t_{ly}))$ $QY(t_{qv}) = \langle QY \rangle + t_{qv} \cdot \sigma_{OY}(\text{sign}(t_{qv}))$

with: $t_{\rm ly} \sim N(0,1); t_{\rm qy} \sim N(0,1)$

Solar Neutrinos

10

 10^{-1}

Neutrino energy (MeV)

30

Fiducial Volume (FV)

- ❖ Unlike WIMP, the B8 FV was not optimized based on signal and bkg predictions. It was selected to:
	- top/bottom \rightarrow no areas with limited detector modelling
	- radius \rightarrow minimize surface bkg to a negligible level.

- ❖ Events near wires are excluded from analysis due to insufficient simulation fidelity.
- ❖ S2 pulse shape varies near perpendicular wires, causing systematic errors if S2 BDT (trained on simulation) is applied.

Signal & Background Prediction

Components Expectation and Best-fit

