

PNRR MUR project PE0000023-NQSTI

Istituto Nazionale di Fisica Nucleare

CSN gruppo V

Measuring the electric dipole moment of the electron using polar molecules in a parahydrogen matrix

Giuseppe Messineo - INFN Padova on behalf of the PHYDES Collaboration

giuseppe.messineo@pd.infn.it

"19th Patras Workshop on Axions, WIMPs and WISPs" , Patras 16 – 20 September 2024 ¹

- Motivation for an eEDM measurement
- Phydes proposal
- $pH₂$ production and characterization
- BaF molecular source
- Conclusions and future work

BSM physics with eEDM

A nonzero eEDM implies an aspherical charge distribution along the electron's spin axis

 \rightarrow violation of T-symmetry

 \rightarrow violation of CP.

STANDARD MODEL PREDICTION

$$
d_e^{SM} \le 10^{-38} e \, cm
$$

TOO SMALL

SM extensions allow a much larger eEDM that is within reach of near-term experiments.

CURRENT EXPERIMENTAL LIMIT

 $d_e < 4.1 \times 10^{-30} e \ cm$

[T. S. Roussy *et al., Science* **381**,46-50 (2023)] @ 90% confidence level (obtained with trapped HfF+)

Powerful window on energy scales much larger than those probed directly at LHC! 3

Ingredients for an eEDM measurement

Diatomic polar molecules (BaF, YbF, ThO) have a single valance electron exposed to a huge effective molecular electric field ($E_{\text{eff}} \sim 10 \text{ GV/cm}$)

Measure electron spin precession frequency in a magnetic and electric field and detect changes in precession rate when the electric field direction is reversed.

FIGURE OF MERIT

 E_{eff} = effective electric field inside the molecule ($>$ \sim 10 GV/cm) $t_{\rm p}$ = spin precession measurement time $\leq T_{\rm coherence}$ N = integrated n° of electrons whose precession is detected

Assuming: $N \approx 10^{16}$ number of molecules (electrons) interrogated $t_{p} \approx 3$ ms

$$
\delta d_e = \sim 10^{-31} e \; cm
$$

Matrix isolation technique

 pH_2 : anti-parallel nuclear spins, lower-energy state of molecular H_2

Stable hexagonal closed packed (hcp) structure. Lattice parameter ≈ 3.78 Å $p = 0.086$ g / cm³ optically transparent media

Guest molecules in a matrix of pH₂ gas solidified at cryogenic temperature

-
- Minimal interactions \rightarrow long coherence time
- Big intermolecular distance \rightarrow no significant deformations of the crystalline structure due to doping
	-

modified from: [DeMille, et al., *Nat. Phys.* **20**, 741–749 (2024)] $T_{coherence}$ measured in alkali atoms in $pH_2 \approx$ hundreds of ms [J. Weinstein et al., PRL 125, 043601(2020)]

Pros: high number number of molecules within the measurement volume (BaF is very reactive!)

Cons: solid environment, need to control systematics to preserve coherence times

PHYDES

(Parahydrogen and diatomic molecules for EDM studies)

R&D project (CSN5 INFN) to study the production of BaF-doped pH2 crystal matrices ($n \approx 10^{15}$ BaF molecules / cm3, approx. 0.1 ppm)

Detection methods under study:

• **Optical detection** with Laser Induced Fluorescence spectroscopy: Measure the population of a prepared coherent superposition state and detect any change in population (precession angle) when E is reversed.

• **Electron Paramagnetic Resonance (EPR)** detection: Microwave induced precession frequency shift in a high external field.

BaF-doped crystal production

- BaF+ is produced in a glow discharge chamber from $BaF₂$ powder
- molecules are accelerated to 1 keV
- isotopically selected with a Wien velocity filter ($\overline{E} \times \overline{B}$)
- decelerated to \approx 5 eV and mixed with a pH₂ gas flow on a sapphire substrate
- neutralized with photo-extracted electrons from a gold layer on the substrate

Parahydrogen production and crystal growth

Sapphire substrate $= 1''$ $T_{\text{sapphire}} = 2.9 K$

50 K shield

 pH_2 gas is sent through a nozzle and condensed on a sapphire substrate @ 2.9 K to form a solid crystal 8

Characterization of the cryogenic matrix (I)

Characterization of the cryogenic matrix (II)

Parahydrogen Thickness o-H² @ 3.5% level 0.1 0.25 $\langle f \rangle \sim (3.4 + - 0.2)$ % 4151-4154 ٠ Growth rate \approx 50 µm / hr 4737-4742 0.08 0.2 Thickness (mm) *Thickness (mm) Ortho fraction* 0.06 0.15 4.2 % 0.04 0.1 2.9% 0.02 0.05 $\mathbf{0}$ θ 60 80 100 120 140 $\overline{2}$ 20 40 160 3 $\overline{4}$ 5 θ *time (h) time (h)*

can be reduced to 100 ppm level if $T_{\text{converter}}$ is lowered to 15 K 10^{10}

BaF production: molecular source

Current status:

- extracted a BaF+ beam $@$ 1 KeV with few μA
- after decelerator 20nA ω 5eV, 10 cm from output (10¹⁴ molecules / hr)

Magnet current (A)

BaF molecular source 50 eV beam

BaF production: laser ablation

Producing BaF molecules with laser ablation and pH_2 as a buffer gas

Cell: 25x25x20mm Output aperture ϕ = 2mm

Attached to $pH₂$ converter 13

[The NL-eEDM collaboration., **Eur. Phys. J. D** 72, 197 (2018)]

Laser for ablation: Q-switch @ 1064nm, mJ energy pulses

 $BaF₂$ powder pad

optical windows on 2 sides:

- Ablation
- BaF absorption probe (laser light tuned to $X^2\Sigma^+$ \rightarrow $A^2\Pi^{1/2}$ λ = 859.8 nm)

BaF-doped pH2 crystal

Distance cell to sapphire substrate (pH2): 50mm

Grew a doped crystal, but…

Bad optical quality \rightarrow strong absorption in all NIR range

Cell can be moved out of the optical axis with a bellow for spectroscopy and absorption measurements.

Laser Induced Fluorescence (LIF) spectroscopy

- Measure shifts and broadening of lines in solid from gas phase
- Infer quality of BaF doping procedure and quantity of molecules.

Ti:S laser (720-850 nm, linewidth 10kHz)

Optical detection scheme

[A. Vutha et al., PRA 98, 032513 (2018)]

EDM measurement using laser-induced fluorescence spectroscopy The ratio of the fluorescence for the σ^- and σ^* determines:

$$
\omega_P = (g\mu_B B_Z \pm d_e \mathcal{E}_{\text{eff}})/\hbar
$$

EPR detection scheme

$$
H = -\mu_B \frac{\mathbf{S}}{\mathbf{S}} \cdot \mathbf{B_0} - \mathrm{d}_{\mathbf{e}} \frac{\mathbf{S}}{\mathbf{S}} \cdot \mathbf{E_0}
$$

Electron Gyro-Magnetic Ratio 28 GHz/T

$$
\omega_S = \gamma_e B_0 + \frac{\mathrm{d_e}}{\hbar} \mathrm{E}_0 = \omega_L + \omega_d
$$

$$
\Delta\omega_{1/2}=2\pi\left(\frac{g\mu_B}{h}\right)\Delta H_{1/2}=\gamma\Delta H_{1/2}=\frac{2}{T_2}\,,
$$

Biasing a microwave cavity with a high DC Electric Field

> $v \approx 10$ GHz E $\approx 10^6$ V/m v_{mod} ≈ 100 kHz

Sample

Conclusions and future work

1) We have demonstrated:

- Ability to grow pH₂ cryogenic crystal with t \approx 500 mm and characterize them with IR spectroscopy
- a BaF molecular source producing 20nA ω 5eV (10¹⁴ molecules / hr) with isotopic selection
- 2) We started integrating in pH₂ BaF molecules from a laser ablation source

FUTURE WORK:

- New laser ablation cell in setup to grow doped crystals
- Laser Induced Fluorescence spectroscopy studies
- BaF molecular source: improve stability and output current to ≈ 100 nA
- Increase purity of pH₂ crystals f_{ortho} to 100 ppm with $T_{converter} \approx 15$ K
- EPR setup and measurements of paramagnetic samples