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Overview
• ORGAN Experiment

• ORGAN Main
• ORGAN Low
• ORGAN Q

• Other candidate searches (dark 
photons, scalars, etc)

• A cool new thing that is sort of 
related
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ORGAN: Oscillating Resonant Group AxioN Experiment 
• High mass (frequency) axion haloscope hosted 

primarily at UWA (Australia)

• Various off-shoot experiments

• Why “high mass” (>60 eV)?μ

• The high mass parameter space is largely 
unexplored with many predicitons..  

• SMASH model predicts 50 ≤ ma ≤ 200 μeV

• QCD lattice simulations favour 
40 ≤ ma ≤ 180 μeV

cajohare.github.io/AxionLimits

http://cajohare.github.io/AxionLimits
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Limits on other Dark Matter Candidates  

• Placing limits ‘for free’ on other dark 
matter candidates 

• Dark photons convert to detectable 
photons

• Simple scaling of Axion limits to Dark 
Photon limits 

• B-field non-uniformity -> scalar dark 
matter (eg. dilaton) limits can also be 
placed
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Phase 1b 
• Targeted search between ~26-27GHz

• Length scale ~45% smaller than phase 1a

• High frequency is difficult —> Resonator is 
necessarily small 

• Relative tolerances are much bigger

• Greater number of mode crossings 

• Extremely sensitive to alignment and rod 
tilt -> couldn’t set antenna coupling reliably 

• Novel high frequency resonator designs 
are needed!
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Phase 1b 
• New tunable rectangular cavity solves many 
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Parameter Tuning-rod cavity Rectangular cavity
C ❌ ✅

Q ❌ ✅

V ✅ ❌

Mode crossings ❌ ✅

Bore utilisation ✅ ❌

Tuning ❌ ✅

Scan rate 🟰 🟰 / ✅
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• First search already complete!

• No mode crossings in 26-27 GHz target region!

• Most sensitive high mass axion search yet!
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ORGAN Run Plan

• Phase 1: Targeted searches between 
15-16GHz and 26-27GHz ~ month 
scale search time

• Phase 2: Wider searches (15-50GHz) 
building on expertise gained in Phase 
1 ~ year scale

• Phase 2: moving to mK Temperatures, 
superconducting cavities, and 
Standard Quantum Limited (SQL) 
amplifiers (and ideally beyond) 

SQL Amps

Most optimistic: 
Efficient GHz SPC

HEMT Amps

✅ ✅

Phase 1 complete
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Phase 2
• Novel cavity designs (rectangular, iris 

coupled)

• Superconducting coatings (BCO 
materials)

• Quantum-limited amps (NKPA under 
testing at the moment)

• Single photon counter R&D continues

• Commencing 2025

Motor Motor
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coupling Rotation stage

Thermalisation: ↓Ts

Knife edges: ↑Q

Clamshell design: ↑Q 
Spurious modes ↓ 

Rod-stage coupler
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Tuning 
rod

• Q -> Quantum

• Utilises a Joshephson Parametric 
Amplifier (JPA) ->  ↓ Ts

• Operates at mK -> ↓ Ts

• Variable coupling -> ↑ QL
β2

(1 + β)2

• Maximises bore volume 
completely! 
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ORGAN-Q Results
• JPA has optimal gain between 6.1 - 

6.4 GHz

• Cavity designed for no mode 
crossings in the region

• Tuned well at mK

• Scan commenced December 2023 
and now complete

• The first “High-Res” ORGAN search TM010  

mode
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recent times
• Various cosmological motivations for such axions
• Win in a few ways…

 

• Problem: Cavities get HUGE
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• Re-entrant cavities (lumped LC resonators)
• Lower frequency, take hit to sensitivity 
• Actually plan to use a novel re-entrant cavity
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ORGAN Low Frequency
• Telescopic tuning rod
• Cavity currently being built
• Planning a few ~100 MHz scan
• Prototype resonators have been 

built and tested…big cavity 
coming soon
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ORGAN Low Frequency
• Where do you put a big re-entrant cavity?
• 3 T MRI Machine at Swinburne University
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Thank you!
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Ben McAllister
Swinburne University of Technology
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• Dilution refrigerator (10 mK base) in SUPL 
(Stawell Underground Physics Laboratory) 

• 1024 m underground (2900 m.w.e) 

• Another at Swinburne University of 
Technology (also 10 mK base) 

• Research areas: quantum technology, 
gravitational waves, dark matter, clocks 
and oscillators, etc 

• Open to collaboration - time is available 
for people with cool ideas

CELLAR Summary
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• SUPL is the only DUL in the Southern Hemisphere 

• The number of DULs with cryogenic systems world-wide is very low 

• Increased interest in DULs with cryostats globally in recent years 

• Evidence for need for such facilities to conduct cutting edge research 
in some fields (quantum circuits, quantum clocks) 

• Can also enhance other kinds of typical DUL research (fundamental 
physics) by employing cryogenic systems
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SUPL - Stawell Underground Physics Laboratory

• Depth of 1025 m gives ~2900 m.w.e 

• Flat rock overburden 

• Muon flux similar to LNGS, Boulby



CELLAR Research



Dark Matter Research
• Low mass WIMP regime remains largely unproved 

(sub 1 GeV) 

Superfluid-based detectors have been identified as a 
promising platform for dark matter searches in this 
mass range 

Cannot currently be realised in many underground 
laboratories owing to the lack of cryogenic facilities 

We plan to demonstrate an underground superfluid-
based dark matter detector and probe an interesting 
region of parameter space
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Dark Matter Research
• CELLAR also enables research in new kinds of quantum sensors explicitly 

for DM detectors, such as new kinds of SNSPDs, MKIDs and TES devices 

• This work can largely be done in the surface facility before moving 
underground 

• Could enable new cryogenic WIMP searches in SUPL



• CELLAR will open in late 2024 

• Hosted in SUPL (Victoria, Australia), ~2900 m.w.e 

• Plans for research in quantum technology, dark matter, other 
new physics such as HFGWs 

• Two dilution refrigerators, one at Swinburne and one in SUPL 

• Very open to domestic international collaboration

Conclusions


