Towards axion searches using superconducting qubits

Sep 16, 2024 The University of Tokyo / ICEPP Tatsumi Nitta @ Patras 2024

Motivation

Dark Photon Waves

Aaron et.al. Moroi et.al. Phys. Rev. Lett. 131, 211001 Check Posters by K. Watanabe & S. Chen

Qubits improves dark photon searches -> Magnetic field makes these axion searches

Single photon

Readout **Dark Matter**

Storage

PRL 126 141302 (2021)

<u>Cavity tuning with qubit</u>

Talk by Kan Nakazono on Wed.

Ways to introduce B-field This poster

Photon transfer

Pros: Easer, Cons: Potentially lossy

arXiv:2403.02321

B-field tolerant qubits

Pros: No loss Cons: More difficult

Qubits worked at least 1T

J. Krause et.al., Phys. Rev. Applied 17, 034032 (2022)

Difficulty

- Critical field
- Suppression of Josephson effect

Solution: All-nitride qubits

Nitride has high Tc2 \rightarrow We don't have to care about critical field

T. Polakovic, APL Materials 6 (2018) 076107

NbN 240 nm film

Suppression of Josephson Effect

$10 T = 1 flux quantum / (14 nm)^2$

 \rightarrow Have to keep the cross-section to the magnetic field small

Current Status

Tin 2D resonator

Summary

- Qubits working under 10 T \rightarrow Dark matter or QSL study
- Nitride has high Hc
- Collaborating with NICT scientists (All nitride qubits)

and FNAL scientists (Better shapes of JJ, magnets, etc)

