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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive

2

Aaron et.al. 

PRL 126 141302 (2021) Talk by Kan Nakazono on Wed.

Qubits improves dark photon searches  
  → Magnetic field makes these axion searches
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Figure 1: Schematic of the axion search setup: (a) The haloscope cavity, located in a 2T mag-
net, connects to the detector via a fixed antenna port and features cryogenic frequency tuning
through three sapphire rods attached to a nano-positioner. (b) The SMPD, a superconducting
circuit with �/2 coplanar waveguide resonators linked to a transmon qubit, is positioned ap-
proximately 50 cm above the magnet and connects via standard coaxial cables. Its frequency
is adjustable by threading the flux through a SQUID embedded in the buffer resonator. Upon
activating the four-wave mixing process, the qubit cycles through photon detection phases. (c)
The detector center frequency alternates between resonance (red) and off-resonance (grey) set-
tings relative to the haloscope’s frequency (blue) in differential mode. (d) Measurement records
from the photon counter display clicks over time, with color indicating the detector’s frequency
setting.
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B-field tolerant qubits

B-field

Pros: Easer, Cons: Potentially lossy Pros: No loss 
Cons: More difficult

Qubits worked at least 1T  

J. Krause et.al., Phys. Rev. Applied  
17, 034032 (2022)

This poster
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Difficulty

- Critical field  
- Suppression of Josephson effect

Nb, Al, Ta

Al
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Solution: All-nitride qubits

plotted as a function of the delay time (τ) in Figs. 3 and 4.
Figure 3a shows the data for energy relaxation, which is well fitted
by an exponential decay function expð"τ=T1Þ, giving
T1 ¼ 18:25 ± 0:91 μs. In addition, we repeated the T1 measure-
ment 100 times over a period of 33 hours to observe the T1
fluctuations of our nitride qubit (see Fig. 3b). The obtained values
range from 8 to 20 μs, and the histogram of the T1 data is well
fitted by a Gaussian distribution with peak center !T1 ¼ 16:3 μs
and standard deviation σT1 ¼ 1:73 μs as shown in Fig. 3c. These
value of T1 are the highest among all-nitride qubits. Currently
they are lower than those of Al-based C-shunt flux qubits coupled
to two-dimensional resonators on Si substrates30 (showing
T1 = 55 μs). However, there is still room for improvements in a
number of aspects to increase T1 further, and the significant
improvement over state-of-the-art all-nitride qubits is an
important step in that direction.

The temporal variation of T1 is usually explained by
quasiparticle fluctuations30 and instability of TLS defects34,35.
When compared to Al-based single-junction Xmon-type trans-
mon qubits in ref. 35 (where T1 histograms show rather broad
Gaussian distributions with σT1 % 20% of !T1, with parameters
!T1 ¼ 46:18 μs and σT1 ¼ 10:24 μs for one sample, and !T1 ¼
70:72 μs and σT1 ¼ 14:31 μs for the other sample), we found that
the T1 data of our nitride qubit show little temporal variation,
σT1 % 10% of !T1. Such a narrow Gaussian distribution is also
observed in Al-based C-shunt flux qubits30 and discussed as an
indication that quasiparticles did not strongly influence this
device. We therefore believe that our nitride qubit is also not
strongly affected by quasiparticles. The instances of large
deviation in T1 to lower values outside the Gaussian peak in
Fig. 3c, i.e., the outliers, can be explained by weakly coupled TLS
defects in the remaining silicon dioxide (SiO2) after buffered

hydrogen fluoride (BHF) treatment in our fabrication process. To
reach a quantitative understanding of the degree to which two-
level system could be limiting the qubit coherence time, more
experiments are needed. Such an investigation is beyond the
scope of this work and could be the subject of future work.

Phase relaxation times, T*
2 and T2. We have measured the

coherence times for phase relaxation from Ramsey and spin-echo
experiments as shown in Fig. 4. The signals, which oscillate at the
detuning frequency δω ¼ ω01 " ωd

!! !!=2π ¼ 5 MHz (where ωd=2π
is the drive frequency), can be fitted by exponentially decaying
sinusoidal functions with relaxation times T*

2 ¼ 3:33 ± 0:30 μs
and T2 ¼ 23:2 ± 5:21 μs (see Fig. 4a, b). The T*

2 and T2 mea-
surements are also repeated 100 times along with the T1 mea-
surements. The resulting histograms are shown in Fig. 4c, d. The
observed values of T*

2 are in the range 1:2"4:4 μs, and the cor-
responding Gaussian fit has a center value !T*

2 ¼ 3:25 μs and a
standard deviation σT2* ¼ 0:44 μs. The T2 values, obtained by
applying an additional π pulse between the π=2 pulses to
decouple low frequency noise, are remarkably higher and lie in
the range 14"41 μs. The obtained center value of the Gaussian
distribution is !T2 ¼ 21:5 μs.

Main factors behind the enhanced coherence time. Compared
with the NbN-based qubit epitaxially grown on a MgO substrate
(T1 & T2 & 0:5 μs)25, the obtained coherence times for the qubit
on a Si substrate (!T1 ¼ 16:3 μs and !T2 ¼ 21:5 μs as the mean
values) represent a significant improvements, namely 32-fold
increase in T1 and a 43-fold increase in T2. To support the
argument that the substrate material is responsible for this

Fig. 3 Energy relaxation time T1 and its temporal variation. a T1 decay profile with an exponential fit (solid line) with T1 ¼ 18:25±0:91 μs. The inset
shows the pulse sequence for T1 measurement consisting of a π pulse (having a Gaussian envelope) with a 40 ns duration at ω01 and a readout pulse with a
400 ns duration at ωr . bMultiple T1 values obtained from 100 measurements performed over 33 h, which show the temporal stability of T1. Here the error-
bars correspond to the standard deviation calculated in the fitting of each decay profile. c Histogram of the T1 values with a Gaussian fit with center value
!T1 ¼ 16:3 μs and standard deviation σT1 ¼ 1:73 μs (Solid line).

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00204-4

4 COMMUNICATIONS MATERIALS | ���������� �(2021)�2:98� | https://doi.org/10.1038/s43246-021-00204-4 | www.nature.com/commsmat

Nitride has high Tc2 → We don’t have to care about critical field
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FIG. 4: Perpendicular upper critical field Hc2 measured
as a function of temperature for a 240 nm thin film
deposited at optimal conditions. Inset: Normalized

magnetization of the same film as a function of applied
field at temperatures close to Tc.

Hc2(T ) =
�0

2⇡⇠2(T )
. (2)

Strictly speaking, this dependence should be valid only
in the critical region close to superconducting Tc, but in
practice, it can be applied even deep into the supercon-
ducting state. From the upper critical fields measured
for film grown at optimal conditions (Fig. 4), the ex-
trapolated perpendicular critical field was determined to
be Hc2(0) = 319 kOe and the estimated coherence length
is ⇠(0) = 3.2 nm, slightly smaller than the bulk value of
5 nm reported in literature[27, 28]. This reduced value
of ⇠(0) is the result of the renormalization of coherence
length due to short electron mean-free path in disordered
sputtered films.[29]

B. Suppression of superconductivity in ultra-thin
films

As many applications of superconducting devices ne-
cessitate for the material to be in a form of a thin film,
we also study the dependence of superconducting and
electronic properties as a function of film thickness. It
is well known that in NbN the superconducting state is
suppressed as the film becomes thin,[30–32] and it is usu-
ally explained either by weak localization[33–35], electron
wave leakage[36] or surface contribution to the Ginzburg-
Landau free energy of the superconductor.[37]

One way to determine which model best fits our experi-
mental data is to look at the dependence of the supercon-
ducting Tc on film thickness (Fig. 5). In electron leakage
model, the the electron wave function is considered to be
quantized in the direction perpendicular to sample sur-
face. This quantization leads to reduction in density of

FIG. 5: Dependence of superconducting Tc on inverse
film thickness. Experimental data is plotted in blue
circles and lines show best fits of di↵erent models:
Green solid line is a fit of Eq. (4), dashed orange

corresponds to fit of Eq. (3) and blue dashed line is a fit
of Eq. (8).

states and allows for the wave function to leak outside
of the superconductor. The simplified theory predicts a
behavior of superconducting Tc as[36, 38]:

Tc

Tc1
= exp


�b

N(0)V d

�
, (3)

where Tc1 is the critical temperature of bulk, b is
the characteristic length of electron wave leakage, ap-
proximately equal to the electron Fermi wavelength, and
N(0)V is the BCS coupling. If we assume N(0)V =
0.32[38], the estimated b = 1.14 Å is reasonably close to
the reported values for NbN. However, considering the
disordered nature of sputtered films, one might want to
use a version of Eq. (3) corrected for presence of defects
and film breakup:

Tc

Tc1
= exp


�1

N(0)V

✓
b

d
+

c

d2

◆�
, (4)

where c is a term describing contribution of defects
and is typically in the range from 0 to 20 Å2. Usage of
parameters reported on previous films [38] leads to quan-
titative behavior similar to the uncorrected theory. Re-
moving this restriction allows for a quantitatively better
fit, with estimated values b = 0.73 Å and c = 2.84 Å2.
The length of b is not significantly shorter than the re-
ported values and c falls within expected range, meaning
that the estimate is not unphysical. The di↵erence from
values reported by Kang et. al might be explained by dif-
ference in the microstructure of our films, as evidenced
by di↵erent sheet resistance of thin films produced by our
IBAS method.
Considering the approximately linear trend of super-

conducting Tc(d), a variational result from modified

 6T
← 32 T at 0 K

T. Polakovic, APL Materials 6 (2018) 076107

NbN 240 nm film

as the area ratio of the small JJ relative to the two larger JJs
α ¼ 0:358, Josephson energy EJ=h ¼ 140 GHz (where h is the
Plank constant, and the corresponding critical current density of the
larger junctions in the qubit is 38.6 A cm−2), and charging energy
EC=h ¼ ðe2=2CΣÞ=h ¼ 0:244 GHz. Here, the total qubit capaci-
tance (CΣ) is 79.6 fF, which includes a shunt capacitance CS = 52.8
fF and the total junction capacitance of the flux qubit CJ ¼ 26:8 fF
(the detailed parameters are also found in the Methods).

Energy relaxation time, T1, and its temporal variation. Qubit
coherence properties were obtained from time-domain mea-
surements. At the flux-insensitive point, we measured the energy
relaxation time (T1), Ramsey decay time (T*

2), and spin-echo
coherence time (T2) by applying the corresponding control-pulse
sequences (see the insets in Figs. 3a, 4a, b). The qubit’s excited
state population is measured by a digitizer and ensemble-
averaged over 6:5 ´ 104 repetitions. The resulting signal is

Fig. 2 Spectroscopy of resonator and qubit. a Spectrum of resonator microwave transmission (S21) with varying probe frequency and normalized flux
(Φ=Φ0). b The line profile of the resonator’s spectrum at flux bias Φ=Φ0 ¼ 0:5 with a Lorentzian fit (solid line). c Qubit spectra obtained using dispersive
readout. The dashed line is a simulation curve for the qubit transition from the ground state to the excited state (ω01=2π). The qubit transition frequency
has a minimum value of 6.61 GHz at the flux-insensitive point.

Fig. 1 All-nitride C-shunt flux qubit consisting of epitaxially grown NbN/AlN/NbN Josephson junctions on Si substrate. a a photograph of the qubit chip
mounted into the sample package, b Laser scanning microscope image of the capacitively shunted flux qubit coupled to a half-wavelength (λ/2) CPW
resonator made of NbN/TiN on a Si substrate. The inset shows a magnified image of a false-colored flux qubit structure with three NbN/AlN/NbN
Josephson junctions (marked as JJ1, JJ2, and JJ3). c Scanning electron microscopy images corresponding to the three JJs taken after the qubit
measurements. d The thickness profile of qubit taken from the laser scanning microscope system. The displayed scales are in μm. e Cross-sectional
schematics of the part indicated by the blue star and dashed line in b. The JJ parts are marked by the orange dotted ellipses.

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-021-00204-4 ARTICLE

COMMUNICATIONS MATERIALS | ���������� �(2021)�2:98� | https://doi.org/10.1038/s43246-021-00204-4 | www.nature.com/commsmat 3

S. Kim, Communications Materials 2, 98 (2021) 
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Suppression of Josephson Effect

12 - JOSEPHSON JUNCTIONS IN A MAGNETIC FIELD 319 

We call �J the flux of the magnetic field that crosses the whole of the junction from 
� a/2 to  a/2, i.e. the insulating layer plus the LONDON regions that develop on 
each side (see Fig. 12.4), 
 �J  Bext Da.  (12.13) 

The expression for the phase difference at ordinate y then becomes 

 �( y)  �(0)  2� �J
�0

y
a

 (12.14) 

and the JOSEPHSON current density crossing the barrier at ordinate y (rela-
tion 10.14) can be written 

 
 
j x

J ( y)  jc sin�(y)  jc sin �(0)  2� �J
�0

y
a

�
��

�
	�
.  (12.15) 

The total intensity of the JOSEPHSON current crossing the insulating barrier can be 
obtained by integrating the current density over the whole cross-section 

 
  
I  c jc sin�( y)d y

�a/2
a/2
�  Ic sin � �J

�0

�
��

�
�


� �J
�0

�

	

�
��
sin�(0).  (12.16) 

This means that for a given magnetic flux �J, the junction can adjust its phase �(0) 
in order to transport, in either direction, any value of the current intensity lying 
between 0 and an upper limit Imax given by 

 
 

Imax (�J )  Ic  sin � �J
�0

�
��

�
��

� �J
�0

.   (12.17) 

Except for zero field, where it takes its greatest value, the intensity Imax reduces to 
zero for field fluxes �J equal to an integer number of fluxons. We remark that the 
profile of Imax in Figure 12.5 is formally identical to the diffraction figure of light 
by a slit under the FRAUNHOFER conditions (parallel incident beam and screen infi-
nitely distant). 

Figure 12.5 
Maximum intensity that can be borne 

by a short JOSEPHSON junction 
subject to a magnetic field 

The profile of Imax resembles a diffraction 
pattern of light by a slit under the 

FRAUNHOFER  conditions. Except at the 
origin, Imax is zero for flux values �J 

equal to an integer number of fluxons. �� �� �� � � � � �����

�

I
���I	�������������

320 SUPERCONDUCTIVITY 

Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of �J are represented in Figure 12.6. 

�������������I	�
���I� ��������������I	�
����
������������������������������ ���������������I	�
����I������������������������������ ��

��� ���

������������������������������������������������I	�
����I������������������������������ �����
���

�����������������������������������
���

���

 
Figure 12.6 - Profiles of the JOSEPHSON current density  

across the insulating layer of a short JOSEPHSON junction subject to magnetic field Bext 
(a, b, c, d) distribution of the JOSEPHSON current across the insulator when the intensity 
takes its maximum possible value Imax compatible with four different values for �J . 
(d, e) for the same value of �J the junction “adjusts” the phase �(0) to the current  
intensity I that is injected: the maximum intensity for (d), or zero for (e). 

»  They are sinusoidal (see eq. 12.15) with the number of periods equal to the num-
ber of fluxons (whether or not it is integer) that �J contains. The periodicity is 

 
 
Y  a�0

�J
.  (12.18) 

»  The magnetic field flux threading a circuit of length Y (in the y-direction) and 
closed beyond the LONDON currents (Fig. 12.7) is one fluxon since by combining 
(12.13) and (12.18) we find 

 Y DBext  �0 .  (12.19) 

»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 

10 T = 1 flux quantum / (14 nm)^2 
→ Have to keep the cross-section to the magnetic field small

320 SUPERCONDUCTIVITY 

Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of �J are represented in Figure 12.6. 
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From “Superconductivity An introduction” Mangin - Kahn
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Our plan

1 T 3 T 10 T

Thinner 
Al + Nb 

All-nitride 
Partially-nitride 
Thin 

All-nitride  
Thin & Small JJ

Critical  
field

Critical  
field Diffraction 

D
iffi
cu
lty

So
lu
tio
n

Critical  
field Diffraction 

Dark Matter Application

Spin Liquid Application
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Current Status

SC-magnet 
3T, 1-inch bore

TiN 2D  
resonator
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Summary

- Qubits working under 10 T → Dark matter or QSL study 

- Nitride has high Hc 

- Collaborating with NICT scientists (All nitride qubits)  

and FNAL scientists (Better shapes of JJ, magnets, etc)


