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GOALS AND A SUMMARY

We consider two methods for non-equilibrium QFT

1. 2PI effective action
2. Lioville-Von Neumann equation ρ̇I = −i[HI , ρI ]

and apply them to study the relic abundance of ALP particles and condensates, taking
care of their interaction.

S =

∫
d4x √g

[
1

2
∂µΦ ∂

µΦ− 1

2
m2
φΦ

2 −
λφ
4!

Φ4 + Kχ + gχΦOχ

]
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GOALS AND AN OUTLINE

We take Φ = ϕ+ φ with ϕ(x) = 〈Φ〉

and extend the work done by Ai, WY., Beniwal, A.,
Maggi, A. (2024) [1] and S. Cao and D. Boyanovsky PRD 107, 063518 (2023)[2] in both
the formalism and considering three ALPs models in a freeze-in scenario:

1. Photophilic→Kχ = −1
4BµνBµν + Kf and Oχ = −1

4 F̃F
2. Photophobic→Kχ = Kf =

∑
f Ψ̄f (i /∂ − mf + qf /A)Ψ and

Oχ = ∂µ

[∑
f gaff Ψ̄f γ

µγ5Ψf

]
3. QCD→Kχ = −1

4Ga
µνGaµν and Oχ = −1

4G̃G

5



Contents Goals and an outline Boltzmann transport equations of ALPs and condensates Summary and conclusions Additional slides

GOALS AND AN OUTLINE

We take Φ = ϕ+ φ with ϕ(x) = 〈Φ〉 and extend the work done by Ai, WY., Beniwal, A.,
Maggi, A. (2024) [1] and S. Cao and D. Boyanovsky PRD 107, 063518 (2023)[2] in both
the formalism and considering three ALPs models in a freeze-in scenario:

1. Photophilic→Kχ = −1
4BµνBµν + Kf and Oχ = −1

4 F̃F
2. Photophobic→Kχ = Kf =

∑
f Ψ̄f (i /∂ − mf + qf /A)Ψ and

Oχ = ∂µ

[∑
f gaff Ψ̄f γ

µγ5Ψf

]
3. QCD→Kχ = −1

4Ga
µνGaµν and Oχ = −1

4G̃G

5



Contents Goals and an outline Boltzmann transport equations of ALPs and condensates Summary and conclusions Additional slides

GOALS AND AN OUTLINE

We take Φ = ϕ+ φ with ϕ(x) = 〈Φ〉 and extend the work done by Ai, WY., Beniwal, A.,
Maggi, A. (2024) [1] and S. Cao and D. Boyanovsky PRD 107, 063518 (2023)[2] in both
the formalism and considering three ALPs models in a freeze-in scenario:

1. Photophilic→Kχ = −1
4BµνBµν + Kf and Oχ = −1

4 F̃F

2. Photophobic→Kχ = Kf =
∑

f Ψ̄f (i /∂ − mf + qf /A)Ψ and

Oχ = ∂µ

[∑
f gaff Ψ̄f γ

µγ5Ψf

]
3. QCD→Kχ = −1

4Ga
µνGaµν and Oχ = −1

4G̃G

5



Contents Goals and an outline Boltzmann transport equations of ALPs and condensates Summary and conclusions Additional slides

GOALS AND AN OUTLINE

We take Φ = ϕ+ φ with ϕ(x) = 〈Φ〉 and extend the work done by Ai, WY., Beniwal, A.,
Maggi, A. (2024) [1] and S. Cao and D. Boyanovsky PRD 107, 063518 (2023)[2] in both
the formalism and considering three ALPs models in a freeze-in scenario:

1. Photophilic→Kχ = −1
4BµνBµν + Kf and Oχ = −1

4 F̃F
2. Photophobic→Kχ = Kf =

∑
f Ψ̄f (i /∂ − mf + qf /A)Ψ and

Oχ = ∂µ

[∑
f gaff Ψ̄f γ

µγ5Ψf

]

3. QCD→Kχ = −1
4Ga

µνGaµν and Oχ = −1
4G̃G

5



Contents Goals and an outline Boltzmann transport equations of ALPs and condensates Summary and conclusions Additional slides

GOALS AND AN OUTLINE

We take Φ = ϕ+ φ with ϕ(x) = 〈Φ〉 and extend the work done by Ai, WY., Beniwal, A.,
Maggi, A. (2024) [1] and S. Cao and D. Boyanovsky PRD 107, 063518 (2023)[2] in both
the formalism and considering three ALPs models in a freeze-in scenario:

1. Photophilic→Kχ = −1
4BµνBµν + Kf and Oχ = −1

4 F̃F
2. Photophobic→Kχ = Kf =

∑
f Ψ̄f (i /∂ − mf + qf /A)Ψ and

Oχ = ∂µ

[∑
f gaff Ψ̄f γ

µγ5Ψf

]
3. QCD→Kχ = −1

4Ga
µνGaµν and Oχ = −1

4G̃G

5



Contents Goals and an outline Boltzmann transport equations of ALPs and condensates Summary and conclusions Additional slides

GOALS AND AN OUTLINE

From the quantum EoMs of ϕ and∆φ, along with the help of the Liouville-Von
Neumann equation, we get the following fully relativistic coupled Boltzmann
equations:

[kµ∂µ − Γλµνkµkν∂pλ +
1

2
(∂µM 2

φ)∂kµ ]fφ(x) = C[fφ, fχ]

[kµ∂µ − Γλµνkµkν∂kλ +
1

2
(∂µM 2

ϕ)∂kµ ]fϕ(x) = C1[fχ]fϕ + C2[fχ]fϕnϕ

Such complete equations can be useful to handle a more complex case
Objective: Get the relic abundances and∆Neff (ϕ = ϕ(t)).
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BOLTZMANN TRANSPORT EQUATIONS OF ALPS
AND CONDENSATES
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BOLTZMANN EQUATIONS WITH A TIME OSCILLATING CONDENSATE

• We get for each model i the following Boltzmann equations:

df
dt

− H k df
dk

+ M (t) ˙̃M df
dk

= C[f ]

Ä + (γi +
3

2
H +

Ṁ
2M

)Ȧ + σiA3 = 0

where ϕ(t) = A(t) cos(
∫

M (t)dt) and γi and σi are coefficients relative to
collision operators involving processes with 1 and 2 condensate quanta
respectively.

• We are solving them numerically by MicrOMEGAs.

8
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PRELIMINARY RESULTS

• As one could have expected from qualitative arguments, the presence of the
condensate is not significant for QCD ALPs→m2

a ∼ m2
a0 + c2gm2

QCD

No relevant changes to former supernova constraints Lella ,A. , Ravensburg, E. ,
Carenza,P. & Marsh , M.C.[3]

• However, it is relevant for the photophilic and photophobic scenarios and brings a
slight overproduction of the thermal population.
Photophilic case: Fixing θ2i = 2π

3 ×10−6, gaγγ ∼ 10−11 GeV−1 andma ∼ 100MeV
we get ζφ ∼ 4× 10−2, while with neglecting condensate ζφ ∼ 10−2

(this last is the same result obtained in the recent preprint Jain, M., Maggi, A., Ai,
W. Y., & Marsh, D. J. (2024) [4])

9
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SUMMARY AND CONCLUSIONS

1. We have developed a full formalism for studying the evolution equation of the ALP
distribution function, for both the ”particle” and the ”condensate” components.

2. Solving the equation for three ALPs scenarios.
3. Up to now, we have only got results with a misalignment angle ψ = ψ(t). Axion

and Peccei-Quinn field potentials are non-linear, so axion topological defects
should be taken in account.

4. Adopt our formalism to study the distribution function of the topological defects
of QCD axion and use it as an alternative method to (numerically) evaluate the
axion spectrum and its spectral index q.
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SECOND CASE: PHOTOPHOBIC ALPS

Γ2PI [ψ,∆φ,∆γ ] = S [ψ]+i/2Tr ln∆−1
φ +i/2Tr ln∆−1

f +i/2Tr[G−1
φ ∆φ]+i/2Tr[G−1

f ∆f ]
(1)

where we have explicitly

∆f ,mn = 〈Ψ̄m(x)Ψn(y)〉 (2)

Gab,−1
f ,mn = icab(iγµ∂µ − mf − gaff ∂µψγ

µγ5) (3)
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QUANTUM EOMS

Precisely, we get from both the two methods the following quantum EoMs for
ϕ(x) = 〈φ〉 and∆φ(x, y) = 〈Tφ(x)φ(y)〉:

−(�+ m̃2
φ)∆

ab(x1, x2)−
∑

c
c
∫

d4x3Πac
φ (x1, x3)∆cb(x3, x2) = icabδ(x1 − x2) (4)

(�+ m̃2
φ)ϕ+

λφ
2
∆++
φ (x, x)ψ − δΓ2

δφ+
|φ+=φ−=ψ + gχ∆χ,F̃F = 0 (5)

With both methods, we assume the SM particles in our models are at thermal
equilibrium.

16
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EXAMPLE OF Γ2
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