

Center for Axion and Precision Physics Research

Advancements on CAPP's Axion Research

Woohyun Chung Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)

19th Patras Workshop on Axions, WIMPs and WISPs

IBS-CAPP in 10 years

- Last 10 years, CAPP has grown to be one of the best axion search facilities in the world
 - CAPP-MAX: the most sensitive axion experiment (when NT is right...)
- Whole axion community has grown much more than before
- However, there are "WIDE" range of frequencies waiting to be explored. If you want to do
 it in your lifetime, you need serious R&Ds (Improvements/Innovations)
 - Powerful, big bore Magnet
 - Quantum noise-limited JPA / Single Photon Detector
 - HTS superconducting cavities
 - Higher frequency w/o sacrificing volume
- CAPP is phasing out at the end of 2024
 - We may continue in other form, which we don't know yet

September 19th 2024

19th PATRAS Workshop at Patras, Greece Woohyun Chung

CAPP Experimental Hall (LVP)

19th PATRAS Workshop at Patras, Greece Woohyun Chung

Status of CULTASK at CAPP

Refrigerators							S	SC Magi	Experiments				
Vendor	Model	BaseT	Power	Туре	Install	B field	Bore	Mat.	Vendor	Install	Exp.	Status	Freq (GHz)
Leiden	DRS1000	10 mK	<u>1.3mW@120mK</u>	wet	2020	12T	32cm	Nb ₃ Sn	Oxford	2020	CAPP-MAX	Running	1.0~1.5
BlueFors (BF3)	LD400	10 mK	580uW@100mK	dry	2016	12T	10cm	Nb₃Sn	AMI	2021	CAPP-HF	Running	4.0~10.0
BlueFors (BF4)	LD400	10 mK	580uW@100mK	dry	2016						CAPP-QNA	Testing	JPA test
BlueFors (BF5)	LD400	10 mK	580uW@100mK	dry	2017	8T	12cm	NbTi	AMI	2016	CAPP-PACE	Running	2.0~3.0 (5.6-5.9)
BlueFors (BF6)	LD400	10 mK	580uW@100mK	dry	2017	8T	16.5cm	NbTi	AMI	2017	CAPP-8TB	Running	1.5~2.0 (5.8-6.0)
Janis	He3	300 mK	25uW@300mK	wet	2017	9T	12cm	NbTi	Cryo- Magnetic s	2017	CAPP-HF	Installing	3.5~4.5 (~10.0)
Oxford	Kelvinox	30 mK	400uW@120mK	wet	2017	18T	7cm	GdBCO	SuNAM	2017	CAPP-18T	upgrading	4.5~6.0

How much can you improve?

- Maximize Signal (B²VQ)
 - 12T 32cm bore LTS magnet by Oxford
 - Improve Q-factor of cavity SC cavity
- > x100 faster scan (than 8T-10cm) x10-100 faster scan than Cu

~ x50 faster scan compared to HEMTs

- Minimize Noise (T_{system} = T_{physical} (T_{amp})
 Quantum noise-limited amplifier JPA

 - Optimize cryo-RF receiver chain (SQL)
 - Single photon detector in the future (esp. for high freq.)
- Higher frequencies without sacrificing volume ullet
 - Pizza Cavity
 - Dielectric rings (TM $_{030}$ and TM $_{050}$)
 - Photonic cell cavity \bullet
 - Meta material + Superfluid LHe tuning ullet

Quantum Noise-Limited Amp (S. Uchaikin)

- Collaboration with Nakamura's group (U. of Tokyo, RIKEN)
 - > 200 JPA chips delivered (1.0 6.0) GHz (4 batches) + Packaged at CAPP
 - 1.0 GHz
 - DAQ running ~ 1.0 GHz data in CAPP-MAX (DFSZ)
 - 2.3 GHz
 - Excellent Noise Temperature (close to SQL) ~120 mK
 - Completed taking axion dark matter physics data around 2.3 GHz
 - 6.0 GHz
 - Wider bandwidth: ~ MHz (covers ~ 300 MHz of frequencies)
 - Taken 5.5-6.0 GHz physics data using 6 & 8 cell Pizza Cavity (two DRs)
 - Shows excellent NT: ~ 250 mK
 - 6 JPAs bundled to give wider coverage
- Wideband (1~15 GHz) TJWPA (INFN) and TWJPA (Lancaster)
- Single photon detector for higher frequency in progress
 - Collaboration with Aalto U., INFN and U. of Hamberg

- Quantum-limited noise
- Noise Squeezing
- T_N ≤ 167 mK @5.6 GHz
- SQL at 5.6GHz 260 mK

Split-band (Dulcimer) Amplifier (up to 6 JPAs)

Uchaikin S.V. et al. Front. Phys., v.12-2024 https://doi.org/10.3389/fphy.2024.1437680

HTS Superconducting Cavity (OJ Kwon)

KAIST 1571

- > SC Resonant Cavity in Axion Haloscope Exp.
 - \checkmark Could improve axion to photon conversion power: enhancing scanning speed (> x10)
 - \checkmark Requirement: should sustain high enough Q-factor in high magnetic field (up to 43 T?)
- Choice of SC at CAPP: well-known ReBCO
 - \checkmark Reasonably low surface resistance
 - ✓ Very high Hc2 (~100 T) and high depinning frequency (~100 GHz)
 - ✓ "biaxially textured"
 - ✓ Technically challenging to grow on 3D surface
 - ✓ But, many "grain aligned" high quality tapes are commercially available.
- How can we attach those tapes on the inner surface of resonant cavity?
 3D surface with planar objects: polygon cavity based on TM010 mode (called "melon cut")
 Excellent results (Q>500,000) even up to 8 T (further improvement in progress)
 Physics data run w/ 0.5M Q-factor is complete: will publish soon
- Much higher Q-factor (>10,000,000) achieved
 Bigger HTS superconducting cavity?

HTS Superconducting Cavity (tapes)

Overlaying test results over existing data Extend to lower temp. (mK) Test cavity (w/ rutile in the middle) Comparing Fujikura w/superpower @150 mK

STE OF C

HTS Superconducting Cavity

KAIST 1571 19

Eliminating edge defects Reaches Q ~ 3.7M, first time Q > Q_{axion}

13 million Q-factor HTS Cavity

- \succ HTS cavity Q-factor can be more than 10 times larger than axion's (~ 10⁶)
- > The scan rate could be enhanced two orders of magnitude compared to using copper cavities

HTS Microwave Cavity Design Simulation

> HTS tape surface quality matters

We learned...

- Gaps between tapes has to be minimized
- Mechanical considerations
- Tape alignment

Axion Experiments at CAPP

	CAPP- PACE	CAPP- 8TB	CAPP- HF	CAPP- PACE -JPA	CAPP- PACE -JPA- 6cell	CAPP- 8TB -JPA- 8cell	CAPP- PACE -JPA-SC	CAPP- MAX-1.0	CAPP- AQN-SC	CAPP- HeT-SC	CAPP- 12T-HF- 3cell	CAPP- MAX-1.2
Year	2018	2019	2019	2020	2021	2021	2021	2021	2023	2023	2023	2024
Magnet [T]	8	8	9	8	8	8	8	12	8	8	12	12
m _a [GHz]	~2.5	~1.6	~4.0	~2.3	~5.6	~5.8	~2.3	1.0 ~ 1.2	~2.3	~5.4	~5.3	1.2 ~ 1.5
Δm_a [MHz]	250	200	250	30	80	>100	30	~20	-	> 50	~30	~ 150
Sensitivity	10*KSVZ +KSVZ	4*KSVZ	10*KSV Z	2*KSVZ	3*KSVZ	KSVZ	KSVZ	DFSZ	DFSZ	KSVZ	KSVZ	DFSZ
T _{phy} [K]	< 0.05	< 0.05	~2	~0.05	~0.05	~0.03	~0.04	~30 mK	60 mK	30 mK	30 mK	~30 mK
T _{sys} [K, mK]	~1 K	~1 K	~2 K	~200 mK	<300 mK	<300 mK	<200 mK	<300 mK	~200 mK	~400 mK	~400 mK	<300 mK
Comments	R&D machine: First physics run (coldest axion data)	First result published by CAPP	First multi- cell cavity result	First run with JPA	First run with JPA+6-cell	First run with JPA+8-cell	First run with JPA+SC	CAPP's main axion detector with JPA	Axion Quark Nugget + SC cavity (Q~1.6M)	First run with He tuning + SC cavity (Q~10M)	3-cell with 12T mag + JPA SC cavity (future)	CAPP's main axion detector with JPA
Publication	Published in PRL	Published in PRL	Published in PRL	Published in PRL		Will publish	Will publish	Published in PRL	Will publish		Published in PRL	Published in PRX

19th PATRAS Workshop at Patras, Greece Woohyun Chung

Grahal-Capp

GrAHal-CAPP ► Focus on 1-3 µeV axion mass (200-600 MHz)

- Challenging task of fabricating 538 liter cavity
- SC cavity for > 35 T environment

P. Pugnat's presentation on Tue.

Toward the most sensitive Haloscope worldwide ► Focus first on 1-3 μeV axion mass (200-600 MHz)

GrAHal-CAPP : Phase 1 @ 4K - 50 K cryo-stage operational

- @ t₀+18 months - 4 K cryo-stage operational
- @ t_0 +24 months → 1st run
- GrAHal-CAPP : Phase 2 @ 50 mK - Operational @ t_0 + 42 months
- $\rightarrow 2^{nd}$ run reaching DFSZ, in 2-year integration time

CAPP's main flagship experiment
 Powerful 12 Tesla Nb3Sn superconducting magnet with big 32 cm bore
 Achieved DFSZ sensitiviity around 1 GHz
 Total T_{sys} reaches 100 ~ 200 mK
 Physical temp. of cavity (30 mK)

➢ First scan: ~20 MHz (4.51~4.59 µeV) Published in PRL
 ➢ Second + Third scan: ~58 + 150 MHz scan ~@1 GHz: complete, published in PRX

Fourth scan: ~300 MHz scan (1.200 - 1.500 GHz) next

- Target physical temperature of cavity T_{phy} < 30 mK
- Bundled 6 JPAs : T_{sys} < 200 mK \rightarrow > 3 MHz / day
- Adding SC cavity:
 - Speed up more: 36 liter 100% SC cavity is implemented
 - Q-factor > 1M will speed up the search ~ 10 times
- Engineering Run in progress

Fourth scan: ~300 MHz (1.2 - 1.5 GHz) Preparing 6 JPAs : T_{sys} < 200 mK → > 3 MHz / day

> 5th scan: ~250 MHz (1.50 - 1.75 GHz)

From O. Kwon's presentation

From O. Kwon's presentation

Axion Experiments at CAPP

CAPP-MAX + JPA + SC cavity + HF

- 12T LTS magnet working as expected
- Physics data (w/ 6 JPAs)
- $\Delta f \sim 300 \text{ MHz}$ for DFSZ sensitivity
- Ultra-light 100% Superconducting Cavity (36 liters)
- High frequency R&D in progress for next freq. range

Axion Experiments at CAPP In PRX (Aug. 2024) KAIST

TUTE OF SC

September 19th 2024

1mm

Axion Experiments at CAPP

Beyond 2024

SUTE OF SE

September 19th 2024

CAPP's Winning Strategy

- Objective: pinpointing axion mass (discovery) in mass range 1-10 (near future) and 10-100 GHz (requires more R&D)
- > Scanning Speed is the key to cover the possible axion mass range, asap
- Required Technology: cryogenics + big & powerful magnet, quantum noise limited amplifiers and high Q-factor superconducting cavity
- CAPP is equipped with everything required now (plus multiple fridges) and ready to race!

CAPP's advantage:

- Powerful Flagship exp. w/ 12T-32cm SC magnet + 4 dry dilution refrigerators
- > Achieved the lowest system noise temperature (< 200 mK) among existing experiments
- Physics data w/ HTS superconducting cavities (> 10 times boost) (new gen. SC cavity shows >10M Q-factor even under 8T field)

CAPP has successfully established multiple haloscope axion dark matter experiments in Korea, the best axion research facility in the world

Through R&Ds we are ready to speed up our axion search and presently, we are collecting data with DFSZ sensitiivity for axion dark matter search in our flagship experiment, CAPP-MAX

>HTS SC cavity in all our Haloscope

Major improvement is expected with CAPP-MAX for next 5 years QA + SC + HF (1-10 GHz)

>Stay tuned!

Thank You For Your Attention!

Discovered by WC in Bogota, Colombia (Sep. 14th, 2018)

Global Trend in Axion Research

Axion vs WIMP (INSPIRE HEP)

- Axion solves both strong CP problem and a dark matter puzzle
- Two most popular dark matter candidates: Axion and WIMP, but axion is gaining momentum compared to WIMP
- Presently, there are >30 axion experiments worldwide with front-runners including

Axion Detection (experimentalist's view)

- Haloscope: the most sensitive method known today, but
- Still very wide range of mass to scan...

- Needs innovations/breakthroughs to speed up the search!
- Taking advantage of the advancement of Superconductor technology (quantum noise-limited amp + superconducting tapes)

- What we achieved
 - > 7 refrigerators (6 magnets) operational at CAPP
 - > 4 (better than KSVZ sensitivity) experiments running...
- R&Ds needed to search 1~10 GHz in 5 years
 - > Optimizing cryo-RF receiver with quantum amplifiers (JPA) at or near SQL
 - ✓ Ultra-low physical temperature (< 25 mK)</p>
 - $\checkmark~$ Reduce the total noise ~ 120 mK @ 1 GHz
 - ✓ >5 MHz /day scanning speed
 - > Developing Superconducting Cavity under High Magnetic Field
 - $\checkmark~$ HTS cavity could enhance the scan speed $\,$ > 10 times
 - Developing High-Frequency Cavities
 - \checkmark Avoid sacrificing volume of the cavity
 - Multi-cavity, dielectric cavity and photonic gap crystal
 - ✓ Superfluid He tuning

Multi-cell (8) cavity + JPA (6 GHz) (S. Lee)

19th PATRAS Workshop at Patras, Greece Woohyun Chung

Soohyung Lee (IBS-CAPP)

Axion Search w/ SC Cavity (D. Ahn)

- Cavity Tuning
 - Tunability (2270 2295 MHz)
 - Form factor ($C \approx 0.6$)
- Total System Noise ($T_{sys} = T_{eff} + T_{add}$)
 - Josephson Parametric Amplifier + HEMT
 - Effective cavity noise temperature ($T_{eff} \approx 60 \text{mK}$)
 - Added noise by the receiver chain ($T_{add} \approx 115$ mK) \bullet

AQN Experiment at CAPP (Jinsu Kim)

CAPP's first Axion Quark Nugget experiment w/ haloscope
 SC taped cavity (Q > 1.6 M) is implemented

1e6 For Axion Quark Nugget Search Session 02, Thu, Dr. Jinsu Kim Quality Factor TM010 TM011 Magnetic Field (T)

Demonstrate the ability of analyzing high-Q data

Develop AQN analysis (can be done in parallel using haloaxion data)

Superfluid Helium Tuning w/ SC cavity (H. Byun)

- Applicable to superconductor cavity and metamaterial cavity
- No significant change in field distribution, form factor and Q-factor

DAQ run with JPA + SC cavity (Q~13M) + superHe is in progress

Concept of Superfluid
Helium (
$$\epsilon_r \approx 1.057$$
) tuning

•
$$f_{TM010} = \frac{1}{2\pi\sqrt{\mu\epsilon}} \frac{2.405}{R}$$

•
$$\frac{f_{empty} - f_{LHe}}{f_{LHe}} = \sqrt{\epsilon_{LHe}} - 1$$
$$\approx 0.028, ~3\% frequence$$

SNITT

High-Frequency Cavity Design (J. Jeong)

High-Frequency Cavity Designs at IBS-CAPP Multiple-cell Cavity [J. Jeong *et al.*, Phys. Lett. B **777**, 412] Wheel Tuning Mechanism [J. Kim *et al.*, J. Phys. G: Nucl. Part. Phys. **47**, 035203] Tunable Photonic Crystal [S. Bae *et al.*, Phys. Rev. D **107**, 015012]

September 19th 2024

19th PATRAS Workshop at Patras, Greece Woohyun Chung