A Machine Learning Approach for Dark Matter Search Analysis: From Savitzky-Golay to Autoencoder

Kaan Özbozduman & Marios Maroudas Sep 16, 2024

19th Patras Workshop on Axions, WIMPs and WISPs

EUROPEAN COOPERATION IN SCIENCE & TECHNOLOGY

A new path for haloscope analysis?

- Conventional haloscope analysis: CAST-CAPP example.
- Can we increase SNR further with new methods?

ingle FFT pack

000 EET pack

100 120

IF filter roll-of

120

Amplitude (x10⁻

0.2

20 40 60

60 80 100

IF Index (x103)

40

2.5

 10^{1}

 $10^{(}$

aussian fit: $\mu = 0.0$, $\sigma = 1.0$

Normalized power excess (σ)

-2

Conventional analysis path

100

4.999 5.000 5.001 5.002 5.003 5.004 5.005 5.000

Processed spectrum

80

IF Index (x10³

SG filter

Deep learning architectures

Deep learning (DL) have revolutionized the field by a wide spectrum of new techniques:

- Convolutional neural networks (CNNs)
 → image recognition
- Transformers → ChatGPT
- Autoencoders → This work

Convolution Neural Network (CNN)

Can Autoencoders replace Savitzky-Golay filtering?

Figure. Transmission plot of the Savitzky-Golay filter. The spectral shape (red band) corresponds to a nearly perfect passband while the axion signal shape (yellow band) corresponds to an imperfect stopband leading to an axion signal attenuation.

As a first step towards full DL integration...

- Savitzky-Golay attenuates the Axion signal
- Autoencoders may perform better.

Preliminary Results

Preliminary results of a Monte Carlo simulation comparing the autoencoder (AE) and Savitzky-Golay (SG) filters against the non-filtered case for a single spectrum.

Preliminary Results

- Signal amplitude distributions after baseline removal using an Autoencoder (AE) filter, Savitzky-Golay (SG) filter, and no filter. Simulation of the previous slide was repeated 10k times.
- The AE filter reduced the mean signal amplitude by 3.6% compared to the no filter option, while the SG filter resulted to a 13.6% reduction.
- These results suggest that the AE filter may increase the signal sensitivity by up to 10%.

Future Work

- Implement convolutional neural networks (CNNs) to enhance local pattern detection in combined spectra.
- Investigate the effectiveness of a variety of DL architectures on Axion searches.
- Applications on real data.

