

First results from a cavity haloscope experiment with a novel frequency tuning system using a qubit

19th Patras Workshop on Axions, WIMPs and WISPs,

University of Tokyo

Kan Nakazono

Today's talk

- $>$ In the context of cavity haloscope experiments, Introducing a novel frequency tuning system, using interaction between cavity and qubit.
- ^Ø Report preliminary Dark photon (DP) exclusion limit using this new system around 36.1 μeV. (~8.73GHz)

Dark photon

- ・One of the candidates of DM
- ・Mixed with photon in kinetic mixing parameter χ
- ・Conversion photon can be measured.

What is "qubit"?

Interaction between cavity and qubit

Jaynes-Cummings model

$$
H = \frac{\hbar \omega_q}{2} \sigma_z + \hbar \omega_c a^\dagger a + \hbar g (\sigma_+ a + a^\dagger \sigma_-)
$$

\n
$$
\rightarrow H = \frac{\hbar}{2} (\omega_q + \frac{g^2}{\Delta}) \sigma_z + \hbar [\omega_c + \frac{g^2}{\Delta} \sigma_z] a^\dagger a
$$

\n
$$
\sigma_z
$$

\n
$$
\sigma_z
$$

\n
$$
\sigma_z
$$

\n
$$
\omega_{\text{cavity}}
$$

\n
$$
\sigma_{\text{cavity}}
$$

\n
$$
\sigma_{\
$$

TE101 mode simulation

Cavity frequency \doteq Qubit frequency \rightarrow Mode crossing is maximum.

TE101 mode simulation

The same design and material of the actual cavity and qubit

Cavity frequency \doteq Qubit frequency \rightarrow Mode crossing is maximum.

Mode crossing simulation

Mode crossing simulation

Test for Tuning qubit's frequency by DC current

Performance Check and Calibrations for cavity tuning

Measuring S21(transmission wave) while varying DC current through the coil.

In this experiment, we assume some features that...

1. Easy implementation

- \circ only with coils and qubits
- without physical restriction
- 2. No need to be worry about electromagnetic wave leakage
	- \circ the risk caused by physical gaps of a cavity
- 3. Fast scanning because of no thermal noise from the friction.

The setup and equipment

The dilution refrigerator cool down to 10mK

Cryogenic Research Center, The University of Tokyo

VNA

Spectrum analyzer

The setup of cavity and qubit

Qubit fabrication

We made our qubits by our selves

2.0kV 17.1mm x50.0k SE(UL)

Manhattan style JJ

 $1.00 \mu m$

Measurement methods

Well-established measurement methods in haloscope experiments

Methods step by step part0

0.Varying DC current suitably (considering the performance check)

Method step by step part1

Method step by step part2

Method step by step part3

3.Data-taking by spectrum analyzer

Data taking & Analysis

Data taking:

・Data was taken on July 24th, July 30th, and Aug 1st in 2024.

・About 1600 Spectra is totally taken.

・one Measurement of data-taking 1 spectrum took 1 min.

Data selection and filters:

- ・Exclude data in which cavity's line shape collapsed
- ・2-order Savitzky-Golay filter

iudged by $β$, Q , $χ²$

・Maxwell-Boltzmann filter

 \rightarrow All filtered spectra are finally combined.

The Parameters in this experiment

The parameters of our setup

Each parameter is in the below table,

$$
P_{A'} = \eta \chi^2 m_{A'} \rho_{A'} V_{eff} Q_L \frac{\beta}{\beta + 1}
$$

$$
P_{noise} \sim \frac{k_b b T_{sys}}{\sqrt{N}}
$$

ı

Results

90% exclusion limit of kinetic mixing χ No significant excess

Results

90% exclusion limit of kinetic mixing χ

Future prospect

- Expand search regime (sensitivity, wide scan range)
	- Sensitivity→ high Q cavity (now: Cu cavity, Q=10^4), low system noise
	- \circ scan range \rightarrow high Q, strongly coupled qubit Now trying

- Expand search regime (sensitivity, wide scan range)
	- Sensitivity→ high Q cavity (now: Cu cavity, Q=10^4), low system noise
	- \circ scan range \rightarrow high Q, strongly coupled qubit \blacksquare Now trying Both cavity and qubit *(Long lifetime)* e.g.)Change islands distance *d...(shift~1GHz)*
- Combine with a qubit measurement
	- Single photon counting
	- Direct excitation enhancement (related poster by Karin Watanabe)
- For Axion detection (to introduce strong B field)

Thank you for your attention!

APPENDIX

How to calculate the 90% exclusion limit

90% exclusion limit

 P and χ^2 have proportional relationship, so

$$
\frac{\chi_{90\%}}{\chi}=\sqrt{\frac{P_{90\%}}{P}}
$$

that is,...

$$
\frac{\chi_{90\%}}{\chi (=1)} = \sqrt{\frac{P_{90\%}}{P(\chi=1)}}
$$

 $P(\chi=1)$ is a constant and determined by the parameters of the set up. You should find the $P_{90\%}$.

Truncated gaussian distribution

● *P>0* **is imposed on Dark photon signal power**

When you observed a particular power excess δ_{s} ,

$$
90\% = \frac{\int_0^{P_a} N(\mu=\delta_s, \sigma=\sigma_s) dP_a}{\int_0^{\infty} N(\mu=\delta_s, \sigma=\sigma_s) dP_a}
$$

Pa...Dark matter signal power

A kind of moving average to ignore sharp peaks and smooth the signal.

- 1. Set window.
- 2. Approximate n-order polynomial equation

$$
f_n=C_0+C_1x+C_2x^2+...+C_nx^n\mid
$$

3. Pick up the center point of the fit curve e.g.) When you set window=7, you should pickup 4th point of the curve.

A kind of moving average to ignore sharp peaks and smooth the signal.

- 1. Set window.
- 2. Approximate n-order polynomial equation

$$
f_n=C_0+C_1x+C_2x^2+...+C_nx^n\\
$$

3. Pick up the center point of the fit curve e.g.) When you set window=7, you should pickup 4th point of the curve.

Savitzky-Golay filter 3/4

Then you move the window in parallel, fit, and pick up each center point...

Savitzky-Golay filter 4/4

Finally, the picked-up center points are filtered spectrum.

Tsys estimation

 $T_{sys} \sim 3.76$ K

