Elisa Todarello (University of Turin and INFN Turin)

19th Patras Workshop on Axions, WIMPs and WISPs Sep 18, 2024

Sezione di Torino

J. Ruz, ET, J. K. Vogel, M. Giannotti, B. Grefenstette, H. S. Hudson, I. G. Hannah, I. G. Irastorza, C. S. Kim, T. O'Shea, M. Regis, D. M. Smith, M. Taoso, J. Trujillo Bueno

arXiv:2407.03828

Axion-Photon Conversion

 $\mathcal{L}_{a\gamma\gamma} = \frac{1}{4}gaF_{\mu\nu}\tilde{F}^{\mu\nu}$

The Sun

The Sun's Layers

K. Strong et al., Bulletin of the American Meteorological Society, vol. 93, issue 9, pp. 1327-1335

J. Redondo, JCAP 12 (2013) 008

Axions from the Solar Core

Axion Flux at Earth

Solar composition from Bahcall, Pinsonneault, Phys.Rev.Lett. 92 (2004) 121301

Axion-Photon Conversion

In a static background $\omega = \omega_a$

Index of refraction in a weakly magnetized plasma

$$n = \frac{k}{\omega} = \frac{\sqrt{\omega^2 - \omega_p^2}}{\omega} \quad \checkmark$$

 $(n^2\omega^2 + \nabla^2)\vec{A} = ig\omega\vec{B}_0a_0 \ e^{i\vec{k}_a\cdot\vec{x}}$

The photon gets an effective mass

Conversion of Ultra-relativistic Axions

In the limit $E \gg \omega_p$

$$P_{a \to \gamma}(h) = \frac{1}{4}g^2 \Big| \int_0^h dh' B_{\perp}(h') \ e^{i \int_0^{h'} dh'' q(h'')} \ e^{-\frac{1}{2} \int_{h'}^h dh'' \Gamma(h'')} \Big|^2$$

q = k -

$$k_a \approx \frac{\omega_p^2 - m_a^2}{2E}$$

$$=\sum_{i}n_{i}\sigma_{i}$$

The Solar Atmosphere

__ 1 000 000 °C Corona

10 000 °C Upper Chromosphere 4 000 °C Lower Chromosphere 6 000 °C Photosphere

Quiet Sun's Magnetic Field

Fig. 16 Schematic, simplified structure of the lower quiet Sun atmosphere (dimensions not to scale): The solid lines represent magnetic field lines that form the magnetic

Photosphere (Rempel, 2014 ApJ 789 132)

supergranulation

Magnetic Field

Corona (Predictive Science Inc., 2019 eclipse)

- CML = 315.01 · Solar North Up
- Interpolation +--->

Model of the Quiet Sun's Atmosphere

Perpendicular magnetic field

Plasma frequency

Conversion Probability

NuSTAR Data

Observed the center of the solar disk for 23,000 seconds during solar minimum in 2020

Signal region $r < 0.1 R_{\odot}$

Background region $0.15 R_{\odot} < r < 0.3 R_{\odot}$

Remove wedges containing X-ray bright points

NuSTAR Data

