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Solitons in SFDM

e SFDM models follow
Gross-Pitaevskii-Poisson Equations

GPP Equations
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Figure from N.P. Proukakis et al. arXiv:2303.02049 [astro-ph.CO] (2023)
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e Ground state solutions are solitons

e Low T equilibrium state condenses into
soltion + excited “NFW skirt”
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Rotation in Scalar Fields

~ : : v — B
e Scalar fields have irrotational velocity: v = -V arg ¢
e Rotating superfluid must develop a vortex where density — 0
e Maximum angular momentum carried by a vortex is L = N(h
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Decay of Vortex-Solitons

e Vortices in center of SFDM solitons
have been shown to be unstable

e Vortex-soliton breaks into two pieces,
one of which is tidally disrupted by the
other

e Decay happens faster than free-fall

time
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Suppressing the decay channel

e Central vortex is not the lowest-energy state with same angular momentum
e If potential from baryonic/other matter dominates SFDM self-gravity, GPP become
linear equations

GPP Equations

.0 —h?
(:;tb - 2m 2¢+ W\ ¢+m( sol+¢bg)w

V2dgy(r) = 47TGp(r) = 4r|p?

e ( =1 configuration is a Hydrogen wave-function
e Eigenstate is stable against perturbations

How strong of a background potential needed to stabilize the vortex?
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Stabilized Vortex-Solitons

o My, =35 x10"Mg, Moy = v/2Mp,
e Initial vortex-soliton perturbed by random Gaussian overdensities

e Vortex persists as long as we run simulation
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Stabilized Vortex-Solitons

o My, =35 x10"Mg, Moy = v/2Mp,
e Initial vortex-soliton perturbed by random Gaussian overdensities

e Vortex persists as long as we run simulation

t=3.7 [Gyr]
y [kpc]
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Stabilized Vortex-Solitons

o My, =35 x10"Mg, Moy = v/2Mp,
e Initial vortex-soliton perturbed by random Gaussian overdensities

e Vortex persists as long as we run simulation

t="17.6 [Gyr]
y [kpc]
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Decay Time vs. Soliton Mass

e Decay time is inversely proportional to
Mso1/ Mpg ratio
e Most DM halos do not have black

holes heavy enough to support
'Y 8 PP M,, (M., x 107
vortex-solitons
—e— 3.52
1.55+0.05 . 10"
® Mpjack hole X Mha/o , while 7.04
1/3 .
Mso o Mha/o <
e So only expect vortices in most RRTES
massive halos with “ultramassive”
black holes
100.0 -

T T T
2.0 4.0 8.0

Vortex Stability in Ultralight Scalar Solitons MM
sol/ Vlpg



Conclusions

Future directions include multi-axion models:

— Core-halo relation changes
— One species can act as “background potential” for another

Self-consistent simulations including SFDM and baryons are needed

Effects of vortices on dynamical heating and other observational signatures are
not understood

Thank You!
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