

Results from the ALPS II first science campaign

Shining new light into the dark sector

Aaron D. Spector

19th Patras Workshop

Light Shining Through a Wall (LSW) Experiments

Light-shinning through a wall concept Using the axions coupling to two photons

ALPS II concept First realization of Hoogeveen idea

Nuclear Physics B358 (1991) 3-26 North-Holland

PRODUCTION AND DETECTION OF LIGHT BOSONS USING OPTICAL RESONATORS

Institute of Theoretical Physics, University of Hannover, Appelstrasse 2, 3000 Hannover 1, Germany

> Received 13 December 1990 (Revised 22 February 1991)

Fig. 3. Axion production and detection with two optical resonators.

F. HOOGEVEEN* and T. ZIEGENHAGEN

Calibrating LSW Experiements

Production Cavity (PC)

 $P_{\text{open}} = T_{M_1} T_{M_2} \eta \beta_{\text{P}} \beta_{\text{R}} P_i$

Production Cavity (PC)

11

Production Cavity (PC)

Infrastructure at DESY **Providing the basis for ALPS II**

Magnets, tunnel, and infrastructure are the foundation of the experiment

- 2x strings of 12 HERA dipole magnets: 5.3 T, 106 m ullet
 - Cryogenic infrastructure \bullet
- 3 clean rooms at the different stations of the experiment ullet

What distinguishes ALPS II

Pushing the sensitivity with precision interferometry

Not just longer magnetic field length

What distinguishes ALPS II

Not just longer magnetic field length

High power laser (HPL) system (30 W) ullet

_	_	_	_	_	_	_	•
						ć	
						Ì	ſ
					_	_	
					_		
					-		
					-	-	
_	_	_	_	_	_		

Not just longer magnetic field length

- High power laser (HPL) system (30 W) lacksquare
- Heterodyne detection system ($\Delta f \sim 1 \,\mu \text{Hz}$) lacksquare

$$P(t) = P_{\nu} + P_{\nu+f} + 2\sqrt{P_{\nu}P_{\nu+f}}\cos(2\pi ft - e^{-2\pi ft})$$

Wall

Not just longer magnetic field length

- High power laser (HPL) system (30 W)
- Heterodyne detection system ($\Delta f \sim 1 \,\mu \text{Hz}$) lacksquare

$$P(t) = P_{\nu} + P_{\nu+f} + 2\sqrt{P_{\nu}P_{\nu+f}}\cos(2\pi ft - e^{-2\pi ft})$$

Not just longer magnetic field length

- High power laser (HPL) system (30 W) \bullet
- Heterodyne detection system ($\Delta f \sim 1 \,\mu \text{Hz}$) lacksquare
- Central optical bench

Not just longer magnetic field length

- High power laser (HPL) system (30 W) \bullet
- Heterodyne detection system ($\Delta f \sim 1 \,\mu \text{Hz}$) lacksquare
- Central optical bench
- World record regeneration cavity \bullet

What distinguishes ALPS II

Pushing the sensitivity with precision interferometry

ALPS II Regeneration Cavity	Nor Res
 World record storage time: 7.17 +- 0.01 ms 	
 Power buildup of 7610 	Jower Jowe
 Robust control system maintains cavity lock for days 	d uoissi
 Characterization of storage time via mirror maps 	ized Transmi e
	Iormali e-3

e

Mirror Maps of the ALPS II Regeneration Cavity

Trend in the Storage Time of the ALPS II Regeneration Cavity

Target: *g*_{ayy} > 2×10⁻¹¹ GeV⁻¹

- > 3 orders more sensitive \bullet than previous LSW setups
- 'Model independent' search \bullet

 10^{-7} 10^{-8} 10^{-9} |g_{aγ}| [GeV 10^{-10} 10^{-11} 10^{-12}

 10^{-6}

 10^{-13}

From Ciaran O'Hare: https://cajohare.github.io/AxionLimits/

24

ALPS II First Science Campaign

ALPS II first science campaign

Simplifying the optical system

ALPS II first science run Simplifying the optical system

Operate without production cavity

- Simplifies control system \bullet
 - Feedback directly to laser frequency rather than PC length ullet
- Light injected to COB increased by a factor of 40x ullet
 - Faster identification of 'light leaks'

Results from the ALPS II first science campaign | Aaron D. Spector | Patras 19 | Patras, Greece | September 17, 2024 DESY. ALPS

Infrastructure at DESY Providing the foundation for ALPS I

Infrastructure at DESY Providing the foundation for ALPS II

Infrastructure at DESY Providing the foundation for ALPS II

Scalar Run from February 2 - 16

- Laser polarization orthogonal to magnetic field
- Acquired > 620,000 s of closed shutter data
- Acquired > 60,000 s of open shutter data
- Average total coupling: 0.54
- Average power build up: 6700

31

Scalar Run from February 2 - 16

- Laser polarization orthogonal to magnetic field
- Acquired > 620,000 s of closed shutter data lacksquare
- Acquired > 60,000 s of open shutter data \bullet
- Average total coupling: 0.54
- Average power build up: 6700 \bullet

Pseudo Scalar Run from March 30 - May 6

- Laser polarization parallel to magnetic field
- Acquired > 1,060,000 s of closed shutter data lacksquare
- Acquired > 130,000 s of open shutter data \bullet
- Average total coupling: 0.49
- Average power build up: 6500 \bullet

Pseudo Scalar Run from March 29 - May 6

- Laser polarization parallel to magnetic field
- Acquired > 1,060,000 s of closed shutter data
- Acquired > 130,000 s of open shutter data
- Average total coupling: 0.49
- Average power build up: 6500

Scalar Run from February 2 - 16

- Limited by stray light \bullet
 - For frequencies < 100 uHz away from signal bin \bullet
 - -5 mHz to 5 mHz shown here \bullet

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

Scalar Run from February 2 - 16

- Limited by stray light \bullet
 - For frequencies < 100 uHz away from signal bin \bullet
 - -5 mHz to 5 mHz shown here \bullet

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

37

Scalar Run from February 2 - 16

- Limited by stray light
- Stray light model fit to data \bullet
 - Background: $P_{\gamma}/P_{\text{open}} = 1.4 \times 10^{-5}$

• Signal:
$$P_{\gamma}/P_{\rm open} = 3.5 \times 10^{-5}$$

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

Scalar Run from February 2 - 16

- Limited by stray light
- Stray light model fit to data lacksquare
 - Background: $P_{\gamma}/P_{\text{open}} = 1.4 \times 10^{-5}$
 - Signal: $P_{\gamma}/P_{\text{open}} = 3.5 \times 10^{-5}$
- 95% C.L. exclusion limit: \bullet
 - $g_{a\gamma\gamma} \lesssim 1.5 \times 10^{-9} \, \text{GeV}^{-1}$

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

Scalar Run from February 2 - 16

- Limited by stray light
- Stray light model fit to data \bullet

• Background:
$$P_{\gamma}/P_{\rm open} = 1.4 \times 10^{-5}$$

• Signal:
$$P_{\gamma}/P_{\rm open} = 3.5 \times 10^{-5}$$

•
$$g_{a\gamma\gamma} \lesssim 1.5 \times 10^{-9} \,\mathrm{GeV^{-1}}$$

(Scalar signal not expected due to current \bullet exclusion limits)

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4} \qquad T_{\rm COB} \simeq 9 \times 1$$

Pseudo Scalar Run from March 30 - May 6

Limited by stray light lacksquare

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

DESY. APS | Results from the ALPS II first science campaign | Aaron D. Spector | Patras 19 | Patras, Greece | September 17, 2024

41

Pseudo Scalar Run from March 30 - May 6

Limited by stray light lacksquare

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

Pseudo Scalar Run from March 30 - May 6

- Limited by stray light
- Stray light model fit to data \bullet
 - Background: $P_{\gamma}/P_{\text{open}} = 0.8 \times 10^{-5}$

• Signal:
$$P_{\gamma}/P_{\rm open} = 3.1 \times 10^{-5}$$

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

Pseudo Scalar Run from March 30 - May 6

- Limited by stray light \bullet
- Stray light model fit to data \bullet

• Background:
$$P_{\gamma}/P_{\rm open} = 0.8 \times 10^{-5}$$

• Signal:
$$P_{\gamma}/P_{\text{open}} = 3.1 \times 10^{-5}$$

• $g_{a\gamma\gamma} \lesssim 1.3 \times 10^{-9} \,\mathrm{GeV^{-1}}$

$$g_{a\gamma\gamma} = \frac{2}{BL} \left(T_{\rm COB} \frac{P_{\gamma}}{P_{\rm open}} \right)^{1/4}$$

$$T_{\rm COB} \simeq 9 \times 1$$

DESY. APS | Results from the ALPS II first science campaign | Aaron D. Spector | Patras 19 | Patras, Greece | September 17, 2024

44

Preliminary exclusion limits A factor of ~50 improvement from ALPS I

Next steps

Upgrading the system to increase the sensitivity

Looking forward

- Current work: Publish analysis and results from first science campaign \bullet
- Work to be done in the upcoming years: ullet
 - Commissioning/science run with production cavity (target: 2000x beyond ALPS I limit) \bullet
 - Commissioning/science run with upgraded cavity optics (target: $g_{ayy} > 2 \times 10^{-11}$ GeV⁻¹)
- Future work: \bullet
 - Commissioning/science run with optical system for TES detector
 - Vacuum magnetic birefringence search
 - High frequency gravitational wave search
 - Axion dark matter search

