The DarkSide-20k Experiment

ON BEHALF OF THE DARKSIDE-20K COLLABORATION

MAŁGORZATA HARAŃCZYK,

JAGIELLONIAN UNIVERSITY IN KRAKÓW, POLAND

LNGS IN ASSERGI, ITALY

DARKSIDE

PATRAS WORKSHOP, 17/09/2024

WIMParticles as candidates for DM

- Weak scale interaction lead to correct density in the universe
- Mass scale: MeV - 100 TeV
- Motivated by many theories

M.Haranczyk PATRAS workshop, 17/09/2024 2

Dual phase Time projector Chamber (TPC)

DarkSide Target material: liquid Ar from underground (UAr)

- Signal: S1 (primary scintillation) + S2 (charge signal)
- S2 light pattern gives x-y position
- Drift time give z position
- S1-S2 relative size give particle information

Global Argon Dark Matter Collaboration

500 people, about 100 Institutions,

Joined expertise about low background liquid Argon based detectors

DarkSide-50

DEAP-3600

Multi step program towards <u>WIMP dark matter</u> detection:

Construction started Operation at 2027, Nominal run time: 10 years Search for dark matter candidates with masses from the keV (through ER arXiv: 2407.05813(2024)) to Planck scale (DEAP arXiv:2108.09405 (2022)).

• Future goal: ARGO, SNOLAB: 400 t (300 t FV) - conceptual studies

4 argon experiments: DarkSide-50 at LNGS; DEAP 3600 at Snolab; ArDM at Canfranc; Mini Clean at Snolab

Present goal: DarkSide 20k, LNGS, ~50 t of UndergroudnLAr (20 t FV) in the double phase TPC (Eur.Phys.J.Plus 133 (2018)131)

DarkSide-20k

DarkSide is located in HALL C at LNGS, Italy at 3400 m of water equivalent

DarkSide-20k installation has started Data taking will start in 2027

DarkSide-20k - nested structure

DarkSide-20k - nested structure

- S2 (charge signal): 20 pe/e-

Light readout: Large SiPM array

Photo Detector Module (PDM)

~ 1 cm² 94.900 SPADs - Single Photon Avalanche Diodes.

> 5 x 5 cm² 24 SiPMs, **Front-end** electronics

• 16 tiles are assembled together in a **PDU**: **20 x 20 cm²**

SiPM

- 1 large PCB to individually enable/disable and bias each single tile and to sum the signals from a quadrant
- 4 tiles are summed together, i.e. 4 tiles correspond to 1 DAQ channel
- 4 outputs: 1/4 DAQ channels -> 1/4 cables-> lower radioactivity

DarkSide-20k PDU Production and Test

SiPM production at LFoundry, Italy

PDU and vPDU Testing ٠

Assembly PDUs will be tested in a cryogenic test facility in Naples – vPDUs will be tested in facilities at AstroCeNT, Edinburgh and Liverpool 👌

PDU Production: TPC PDUs at NOA – vPDUs at Birmingham, STFC interconnect, Manchester and Liverpool

PDU packaging and assembly in Nuova Officina Assergi (NOA) in a ISO6 clean room at LNGS

Mock-up test

~1 ton LAr TPC currently at LNGS

Validation of the technical choices:

- Mechanics, Robustness of the PMMA, Clevios and TPB coating on PMMA
- Electric field values and high voltage feedthroughs
- Resistor chains elements
- Grids and wires
- Cryogenics

10

WIMP Signal & Backgrounds

Backgrou

³⁹Ar β decay

γ from rock and γ,e from material

Radiogenic neutron (a,n) reaction in detector material

> Surface contamination due Rn progeny

Muon induced background

Neutrino coherent scatter

- Single nuclear recoil
- Energy recoil between
 1 and 100 keV

Radiopurity requirements for 10 year operation:

- neutrons after cuts < 0.1</p>
- < 0.05 from β and γ

und cource	

Mitigation strategy

Use Underground Argon + pulse shape discrimination

Pulse shape discrimination Selection material

Material screening & selection, MC study Definition of Fiducial volume in the TPC Veto to reject neutron signal

Surface cleaning Reduce the number of surfaces Installation of Rn abated system

Cosmogenic veto

Irreducible

11

Undergrowind argon

Urania US (Extraction from underground sources):

• Use of the argon extraction plant in Cortez, Colorado, to reach capacity of acquiring 330 kg/day of argon.

UAr depleted in ³⁹Ar isotope, but poor chemical purity. \bullet

Aria Italy (Separation):

• 350 m tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic separation of Underground Argon. <u>Eur.Phys.J.C 81 (2021) 4, 359</u>

- A "1.4-litre" single-phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches (URANIA+ARIA). Ar-39 depletion factor sensitivity: 6 x 10⁴ 90% C.L in 1 week of counting time. More details of DArT: JINST 15 P02024 (2020)
- In 2024 successful run with UAr from DS-50.

Ar-39 depletion factor in UAr: around 1400

- TPC= 50 tons -> 36 Hz of Ar-39
- Veto = 35 tons -> 26 Hz of Ar-39

DArT in ArDM Canfranc, Spain (Quality control)

ELECTRON recoil - PSD method

- TPC= 50 tons -> 36 Hz of Ar-39
- Veto = 35 tons -> 26 Hz of Ar-39

Mitigated with pulse shape discrimination:

- residual background is < 0.01 events / 200 tonne x year
- dead time negligible

PROMPT LIGHT $PSD(f90) = \frac{1}{PROMPT + LATE \ LIGHT}$

the discrimination parameter f90 defined as a ratio of detected light in the first 90 ns (optimised for DS-50), compared to the total signal

Complete control needed!

Main Neutron sources:

- ²³⁸U and ²³²Th contaminations of the detector material
 - (α, n) reaction in the detector material
- cosmic ray induced neutron production

NUCLEAR recoil

Neutron background is the most dangerous: undistinguishable recoil from potential WIMP

over every component that goes into the detector

- Big effort engaging laboratories around the world: ▶ CIEMAT,
- SNO,
- Jagiellonian University,
- Canfranc,
- Boulby,
- LNGS,

14

methods, this allows to take into account potential secular disequilibrium.

Potential disequilibrium in ²³⁸U

Sample	²³⁸ U (ICP-MS)	²²⁶ Ra (HPGe)	²¹⁰ Pb	
Arlon 55NT (DARKSIDE Collaboration)	(1.95 ± 0.05) mBq/kg	(53 ± 5) mBq/kg	(128 ± 26) mBq/kg	

NUCLEAR recoil

1. Each uranium (²³⁸U, ²²⁶Ra, ²¹⁰Pb; ²³⁵U) and thorium chain is measured separately using different

2. MC simulation

- (α, n) reactions in DS-20k.
- Geant4 based SaG4n package: http://win.ciemat.es/SaG4n/ > Simulations including the chemical composition of the materials uncertainties and different interaction models/tables (Thalys, JENDL/Tendle) <u>arXiv:2405.07952v2((α , n)neutron yield calculations)</u>

Estimation of neutron background events expected during DS-20k operation is within a set goal limit of 0.1 n/(200 t yr) in the fiducial volume for the current design of the detector.

NUCLEAR recoil

Detector design choices and precise knowledge of the alpha flux allows to simulate the

Attenuator

High mass WIMP Sensitivity

Sensitivity to high mass WIMP-nucleon scatter cross section of $7.4 \text{ x } 10^{-48} \text{ cm}^2$ for a 1 TeV/ c^2 WIMP for a total exposure of 200 tons x years.

Both signals (S1 scintillation and S2 ionisation) used.

17

DarkSide-20k low mass background model

- Uniformly distributed in the fiducial volume
- Include recent calculations of β -decay energy spectra

Phys.Rev.A 90 (2014) 012501

Phys.Rev.C 102 (2020) 065501 Include shape systematics (atomic exchanges, screening effect, Q-value)

³⁹Ar dominant for $N_{\rho} \geq 4$

Low mass WIMP Sensitivity 1 year of data taking

	DS-20k - 1 year QF - N _e -≥2
	DS-20k - 1 year QF - N _e -≥4
	DS-50 - QF - 2023
	PandaX-4T 2023
	XENONnT 2023
	PandaX-4T 2023
	LUX 2021
	XENON1T 2021
	Pico-60 2019
	CDMSlite 2018
	LUX 2017
	CDMS 2013
	Cogent 2013
	DAMA/LIBRA 2008
	Excluded region
	LAr Neutrino fog n=2
	Xe

experiments

Using S2 (ionisation signal) only.

Detailed background study, information from DarkSide-50 data.

Prediction for many light DM candidates.

First assessment of DarkSide-20k sensitivity to low mass dark matter particles

Further strengthens the physics reach of DarkSide-20k with a leading role below 5 GeV/c^2

Scales with sqrt(exposure)

10.0

CONCLUSIONS

- underground argon extraction & purification, background assay campaign
- DarkSide-20k is in position to lead the search for WIMPs, with complimentary reach above the LHC center of mass energy
- •Achieving the <0.1 instrumental backgrounds to the dark matter search is realistic And allowing to expand the reach beyond heavy WIMPs!
- Darkside-20k construction has started
- Data taking will start in 2027

• DarkSide-20k is pushing the state-of-the-art in several directions: SiPM technology,

Gran Sasso

3800 m w. e.

Deep underground location at LNGS, Italy.

DarkSide-20k low mass background model

- Simulated with a GEANT-4 based simulation tool
- $\approx 2.5 \mathrm{x} \mathrm{reduced}$ bkg contamination per surface area wrt DS-50

DarkSide-20k low mass background model

- Observed in DS-50
- Origin might be trapped electrons by impurities and released later
- For DS20k: Extrapolation from DS-50 data

SE 18x lower than ${}^{39}\text{Ar}$ at $N_e = 4$

2 fit scenarii:

- Conservative • (almost indep. of SE modelling): Fit
 - from $N_{e} = 4$ (DS-50 strategy)
- Ultimate: Fit from $N_e = 2$ assuming good control of rate and spectral shape of SE in DS-20k

(8) DarkSide-20k low mass background model

Mostly from solar neutrinos (⁷Be, ¹⁵O, pep, ⁸B, hep)

Include radiative corrections in $CE\nu NS$

JHEP 05, 271

Include accurate 🗳 parametrization of the nucleus structure

> Phys.Rev.D 102 (2020) <u>015030</u>

Assuming Standard Halo Model and recommended conventions Eur. Phys. J. C 81

(2021), p. 907

9

Localised at low N_e

Including Migdal effect

Assuming 1 year of data taking

13

- Migdal effect = possible atomic effect
- Electron released in NR
 - Lower the detection threshold
- With Migdal effect: best limits from 40 MeV/c² to 5 GeV/c²
- Expect > 1 order of magnitude improvement wrt to current experiments in 1y only

- DS-20k 1 year QF - N_e ≥ 2
- DS-20k 1 year ER Migdal - $N_e \ge 2$
- DS-20k 1 year QF - N_e \ge 4
- DS-20k 1 year ER Migdal - N_e ≥ 4
- DS-50 QF 2023
- LZ 2023
- PandaX-4T 2023
- XENONnT 2023
- PandaX-4T 2023
- ----- XENON1T 2021
- Cresst-III 2019
- - Excluded region

ALP and dark photon (DP)

Absorption of ALP/DP by bound electrons \rightarrow mono-energetic signal

- ALP = pseudo scalar particle
- Coupling ALP electrons $\rightarrow g_{Ae}$

Expect ≈**5**x improvement wrt to current experiments in **1y** only

- DP = vector boson particle
- Kinetic mixing between DP and SM photons \rightarrow strength κ

 $N_e - \ge 2$