The **DarkSide-20k Experiment**

ON BEHALF OF THE DARKSIDE-20K COLLABORATION

MAŁGORZATA HARAŃCZYK,

JAGIELLONIAN UNIVERSITY IN KRAKÓW, POLAND

LNGS IN ASSERGI, ITALY

DARKSIDE

PATRAS WORKSHOP, 17/09/2024

- Weak scale interaction

lead to correct density

in the universe

 Mass scale:

 Mass scale: lead to correct density in the universe
- Mass scale: MeV - 100 TeV
- Motivated by many theories

WIMParticles as candidates for DM

2 M.Haranczyk PATRAS workshop, 17/09/2024

- Signal: S1 (primary scintillation) + S2 (charge signal)
- S2 light pattern gives x-y position
- Drift time give z position
- S1-S2 relative size give particle information

Dual phase Time projector Chamber (TPC)

DarkSide Target material: liquid Ar from underground (UAr) $S2/S1_{\text{NR}} < S2/S1_{\text{ER}}$

Global Argon Dark Matter Collaboration

500 people, about 100 Institutions,

4 argon experiments: DarkSide-50 at LNGS; DEAP 3600 at Snolab; ArDM at Canfranc; Mini Clean at Snolab

 Joined expertise about low background liquid Argon based detectors

Multi step program towards WIMP dark matter detection:

• **Present goal: DarkSide 20k, LNGS, ~50 t of UndergroudnLAr (20 t FV) in the double phase TPC** (Eur.Phys.J.Plus 133 (2018)131)

• Future goal: ARGO, SNOLAB: 400 t (300 t FV) - conceptual studies

Construction started Operation at 2027, Nominal run time: 10 years Search for dark matter candidates with masses from the keV (through ER arXiv: 2407.05813(2024)) to Planck scale (DEAP arXiv:2108.09405 (2022)).

Data taking will start in 2027

DarkSide-20k DarkSide-20k installation has started

600 tonnes of atmospheric argon

DarkSide-20k - nested structure

-
-
-
-
-
-
-
-

DarkSide-20k - nested structure

Light readout: Large SiPM array

• 16 tiles are assembled together in a **PDU**: **20 x 20 cm2**

- 1 large PCB to individually enable/disable and bias each single tile and to sum the signals from a quadrant
- 4 tiles are summed together, i.e. 4 tiles correspond to 1 DAQ channel
- **• 4 outputs: 1/4 DAQ channels -> 1/4 cables-> lower radioactivity**

120 PDUs in the neutron veto

30 PDUs in the outer veto

SiPM

Photo Detector Module (PDM)

∼ **1 cm2 94.900 SPADs - Single Photon Avalanche Diodes.**

> **5 x 5 cm2 24 SiPMs, Front-end electronics**

DarkSide-20k PDU Production and Test

PDU assem

SiPM production at LFoundry, Italy

PDU packaging and assembly in Nuova Officina Assergi (NOA) in a ISO6 clean room at LNGS

PDU and vPDU Testing

Assembly PDUs will be tested in a cryogenic test facility in Naples – vPDUs will be tested in facilities at AstroCeNT, Edinburgh and Liverpool ϕ

PDU Production: TPC PDUs at NOA - vPDUs at Birmingham, STFC interconnect, Manchester and Liverpool

Mock-up test

~1 ton LAr TPC currently at LNGS

Validation of the technical choices:

- Mechanics, Robustness of the PMMA, Clevios and TPB coating on PMMA
- Electric field values and high voltage feedthroughs
- Resistor chains elements
- Grids and wires
- **Cryogenics**

10

WIMP Signal & Backgrounds

11

• Single nuclear recoil

• Energy recoil between 1 and 100 keV

 $39Ar B decay$ Use Underground Argon + pulse shape discrimination

^γ from rock and γ,e from material Pulse shape discrimination Selection material

Radiogenic neutron (α,n) reaction in detector material

- neutrons after cuts < 0.1
- **■ < 0.05 from β and γ**

Material screening & selection, MC study Definition of Fiducial volume in the TPC Veto to reject neutron signal

Surface contamination due Rn progeny

Muon induced background Cosmogenic veto

Neutrino coherent scatter **Internal and Irreducible**

Background source Mitigation strategy

Surface cleaning Reduce the number of surfaces Installation of Rn abated system

Radiopurity requirements for 10 year operation:

Underground argon

#10 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 690 600

• Use of the argon extraction plant in Cortez, Colorado, to reach capacity of acquiring 330 kg/day of argon. The stages reflects in a very tall column stages reflects in a very tall column stages reflects in a very tall column

Urania US (Extraction from underground sources):

• **UAr depleted in 39Ar isotope**, but poor chemical purity.

Aria Italy (Separation):

• 350 m tall column in the Seruci mine in Sardinia, Italy, for high-volume **chemical** and isotopic separation of Underground Argon. *Eur.Phys.J.C* 81 (2021) 4, 359

- A "1.4-litre" single-phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches (URANIA+ARIA). Ar-39 depletion factor sensitivity: 6 x 104 90% C.L in 1 week of counting time. More details of DArT: [JINST 15 P02024 \(2020\)](https://arxiv.org/ct?url=https://dx.doi.org/10.1088/1748-0221/15/02/P02024&v=1fdf23dc)
- In 2024 successful run with UAr from DS-50.

DArT in ArDM Canfranc, Spain (Quality control)

•**Numero di stadi teorici => ordine delle migliaia**

#10 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 690 600

•**Usuali = 20-30 m**

•**A sezioni separate**

~350 m

Ar-39 depletion factor in UAr: around 1400

- **• TPC= 50 tons -> 36 Hz of Ar-39**
- **• Veto = 35 tons -> 26 Hz of Ar-39**

ELECTRON recoil - PSD method

-
-
-

of detected light in the first 90 ns (optimised for DS-50), compared to the total signal

- residual background is < 0.01 events / 200 tonne x year
- dead time negligible

- 238U and 232Th contaminations of the detector material
	- \bullet (α ,n) reaction in the detector material
- cosmic ray induced neutron production

Neutron background is the most dangerous: undistinguishable recoil from potential WIMP

Main Neutron sources:

14

NUCLEAR recoil

Complete control needed!

over every component that goes into the detector

- ▸ **Big effort engaging laboratories around the world:** ▸ CIEMAT,
- ▸ SNO,
- ▸ Jagiellonian University,
- ▸ Canfranc,
- ▸ Boulby,
- ▸ LNGS,

1. Each uranium (238U, 226Ra, 210Pb; 235U) and thorium chain is measured **separately using different**

methods, this allows to take into account potential secular disequilibrium.

Potential disequilibrium in 238U

NUCLEAR recoil

NUCLEAR recoil

2. MC simulation

- **(α, n) reactions** in DS-20k.
- ▸ Geant4 based SaG4n package: http://win.ciemat.es/SaG4n/ ▸ Simulations including the chemical composition of the materials uncertainties and different interaction models/tables (Thalys, JENDL/Tendle) $arXiv:2405.07952v2((\alpha, n)$ $arXiv:2405.07952v2((\alpha, n)$ neutron yield calculations)

▸ Detector design choices and precise knowledge of the alpha flux allows to **simulate the**

Attenuator

▸ **Estimation of neutron background events** expected during DS-20k operation is within a set goal limit of $0.1 \text{ n} / (200 \text{ t yr})$ in the fiducial volume for the current design of the detector.

High mass WIMP Sensitivity

Sensitivity to high mass WIMP-nucleon scatter cross section of 7.4×10^{-48} cm² for a 1 TeV/c2 WIMP for a total exposure of 200 tons x years.

Both signals (S1 scintillation and S2 ionisation) used.

DarkSide-20k low mass background model LAr intrinsic backgrounds (β decays) $39Ar$ New $day)$ Same activity as DS-50 **Model PDMs SE** 39 Ar (same UAr mine) **TPC CEVNS** $\pmb{\times}$ 0.1 $A(39Ar) = 0.73 mBq/kg$ 85 Kr Ρă **Vessel** $V-ES$ WIMP $m_X = 2$ GeV/c², $\sigma_{SI} = 3.10^{-44}$ cm^2 10^{-2} $\mathbf{N_{e}}$ $85Kr$ 25 10^{-3} \overline{c} Urania (Colorado, USA): dedicated facility for 10^{-4} Events extraction 10^{-5} Reduced ⁸⁵Kr activity wrt **DS-50** $A(^{85}Kr) = 1.9 10^{-2} mBq/kg$ 10^{-6} the property of the local division in the 10^{-7} 10 50 100 170

- Uniformly distributed in the fiducial volume
- Include recent calculations of β -decay energy spectra

Phys.Rev.A 90 (2014) 012501

Phys.Rev.C 102 (2020) 065501

Include shape systematics (atomic exchanges, screening effect,

³⁹Ar dominant for $N_e \geq 4$

Number of Electrons

Low mass WIMP Sensitivity 1 year of data taking

Using S2 (ionisation signal) only.

Detailed background study, information from DarkSide-50 data.

Further strengthens the physics reach of DarkSide-20k with a leading role below 5 GeV/ c^2

Prediction for many light DM candidates.

First assessment of DarkSide-20k sensitivity to low mass dark matter particles

3.

1 year

 ≥ 4

CONCLUSIONS

•DarkSide-20k is pushing the state-of-the-art in several directions: SiPM technology,

- underground argon extraction & purification, background assay campaign
- **•DarkSide-20k is in position to lead the search for WIMPs**, with complimentary reach above the LHC center of mass energy
- **•Achieving the <0.1 instrumental backgrounds** to the dark matter search is realistic And allowing to expand the reach beyond heavy WIMPs!
- **•Darkside-20k construction has started**
- **•Data taking will start in 2027**

TEXT

Gran Sasso

3800 m w. e. Weep underground location at LNGS, Italy.

DarkSide-20k low mass background model

- Simulated with a **GEANT-4 based** simulation tool
- \approx 2.5x reduced bkg contamination per surface area wrt DS-50

DarkSide-20k low mass background model

- Observed in **DS-50**
- Origin might be trapped electrons by impurities and released later
- For DS20k: **Extrapolation** from DS-50 data

SE 18x lower than $39Ar$ at $N_e = 4$

2 fit scenarii:

- **Conservative** \bullet (almost indep. of SE modelling): Fit from $N_e = 4$ (DS-50 strategy)
- Ultimate: Fit from N_e = 2 assuming good control of rate and spectral shape of SE in $DS-20k$

$(\,8\,)$ DarkSide-20k low mass background model

Mostly from solar neutrinos $(7Be, 15O, pep,$ $8B$, hep)

Include radiative corrections in $CE\nu$ NS

JHEP 05, 271

Include accurate^E parametrization of the nucleus structure

> Phys.Rev.D 102 (2020) 015030

Assuming **Standard Halo** Model and recommended conventions **Eur. Phys. J. C 81**

(2021), p. 907

9

Localised at low N_e

Assuming 1 year of data taking

13

- Migdal effect = possible atomic effect
- Electron released in NR
	- Lower the detection threshold
- With Migdal effect: best limits from 40 MeV/c^2 to 5 GeV/ c^2
- Expect > 1 order of magnitude improvement wrt to current experiments in 1y only

Including Migdal effect

- $DS-20k 1$ year $- N_e - \geq 2$
- $DS-20k 1$ year ER Migdal - N_e \geq 2
- $DS-20k 1$ year $QF - N_e - \geq 4$
- $DS-20k 1$ year ER Migdal - N_e \geq 4
- $DS-50 QF 2023$
- LZ 2023
- PandaX-4T 2023
- XENONnT 2023
- PandaX-4T 2023
- XENON1T 2021
- Cresst-III 2019
- XENON1T ME 2019
	- Excluded region

ALP and dark photon (DP)

Absorption of ALP/DP by bound electrons \rightarrow mono-energetic signal

- $ALP =$ pseudo scalar particle
- Coupling ALP electrons $\rightarrow g_{Ae}$

Expect \approx 5x improvement wrt to current experiments in 1y only

- $DP = vector boson particle$
- Kinetic mixing between DP and SM photons \rightarrow strength κ

