Search for dark photon dark matter using large-scale superconducting quantum computers as detectors

Shion Chen (Kyoto University), Yutaro Iiyama (UTokyo ICEPP)

 \checkmark

 \rightarrow

SQUID-based tuning → See Karin Watanabe's poster
Use of Floquet qubit resonance

"Floquet qubit"

Hamiltonian of a qubit driven at two frequencies (one on resonance):

$$H(t) = -\frac{\omega_q}{2}\sigma_Z + \left[\alpha_{\text{drive}}\cos\omega_q t\right]\sigma_X + \left[\alpha_{\text{DM}}\cos(\omega_{\text{DM}}t + \phi_{\text{DM}})\right]\sigma_X$$

When $\omega_{\text{DM}} = \omega_q \pm \alpha_{\text{drive}'}$ qubit-frame Pauli expectation values evolve as $\langle X(t) \rangle = \cos\left(\frac{\alpha_{\text{DM}}}{2}t\right)$ $\langle Y(t) \rangle = \pm \sin\left(\frac{\alpha_{\text{DM}}}{2}t\right) \cos(\alpha_{\text{drive}}t \pm \phi_{\text{DM}})$ $\langle Z(t) \rangle = \pm \sin\left(\frac{\alpha_{\text{DM}}}{2}t\right) \sin(\alpha_{\text{drive}}t \pm \phi_{\text{DM}})$ \rightarrow Probe DM frequency by scanning α_{drive} and observing $\langle X \rangle, \langle Y \rangle, \langle Z \rangle$

- Floquet theory: "For H(t + T) = H(t), there exist solutions $e^{-i\epsilon_n t} |\psi_n(t)\rangle$ where $|\psi_n(t + T)\rangle = |\psi_n(t)\rangle$ "
 - ϵ_n : quasienergies
 - Apply to $H_{\rm F}(t)$ \rightarrow Periodic solutions = Floquet qubit is approximately $|0_{\rm F}\rangle = |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$ and $|1_{\rm F}\rangle = |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$ with quasienergies $\pm \alpha_{\rm drive}$
- This Floquet qubitais resonant at $\omega_q \pm \alpha_{\rm drive}$ ("AC Stark shift" of the qubit)
- $\circ |0_{\rm F}\rangle$ and $|1_{\rm F}\rangle$ have ×~2.5 enhanced coherence times ("spin locking")

Demonstration and Results

Each color represents each qubit

Preliminary observed limits (90% CL) on $\alpha_{\rm DM}$

※ Upper limit of <562Hz reads ε <10⁻¹¹ with assuming a starndard transmon design, κ =1, and no systematics assigned.