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Quantum computers are DM detectors
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Towards deeper sensitivity: Multi-bit interference
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FIG. 1: Quantum circuit for the DM detection. The gate with H represents the Hadamard gate, while that with “•”
and “⊕” connected by the line is the CNOT gate (where “•” is the control qubit). The UDM represents the

evolution with the effect of DM.

for the DM detection can be initialized, measured, and
evolved through standard gates like the Hadamard gate
and CNOT gate. (See Appendix A for the gate opera-
tions used in our analysis.)
An example of quantum circuits for detecting the DM

signal is shown in Fig. 1. This is a quantum circuit for
quantum-enhanced parameter estimation [10–12]. Our
circuit consists of only one-dimensional nearest neighbor
interaction between qubits with O(nq) gates. We assume
that t1 − ti ∼ tf − t2 ≪ t2 − t1, so that the effect of DM
is mainly in time interval t1 ≤ t ≤ t2. We also assume
that the coherence time of the qubits is long enough, so
that the coherence time of the system, τ , is determined
by the coherence of the DM and does not scale with n−1

q .
We expect that the coherence time of the qubit system
longer than that of DM is achievable in future quantum
computer platforms with sizable nq. The entangled qubit
system is usually more fragile than the individual nonen-
tangled ones and the coherence time of the entangled
state may be ∼ τq/nq, where τq is the coherence time
of a single qubit [16]. Even in such a case, the following
discussion holds as far as nq ! τq/τDM (with τDM being
the coherence time of the DM).
In order to understand the enhancement mechanism

of the signal, it is instructive to consider the case that
α = 0. For α = 0, the eigenstates of UDM are |+⟩ and
|−⟩, satisfying UDM |±⟩ = e±iδ |±⟩, where

|±⟩ ≡
1√
2
(|g⟩± |e⟩). (9)

Thus, considering the states with nq qubits, |±⟩⊗nq , they

evolve as |±⟩⊗nq → U
⊗nq

DM |±⟩⊗nq = e±inqδ |±⟩⊗nq ; the
phases from nq qubits coherently add up. Our quantum
circuit measures this phase as the relative phase between
|+⟩⊗nq and |−⟩⊗nq by using the superposition of these
states.
With the circuit, the state evolves as follows. First, all

the qubits are prepared in the ground state at t = ti. At
t = t1, the state of sensor qubits is given by

|Ψ(t1)⟩ =
1√
2

(

|+⟩⊗nq + |−⟩⊗nq

)

. (10)

With the effect of the DM, the state at t = t2 becomes

|Ψ(t2)⟩ =
1√
2

(

einqδ |+⟩⊗nq + e−inqδ |−⟩⊗nq

)

. (11)

The quantum operation from t = t2 to tf brings the phase
information to the first qubit:

|Ψ(tf)⟩ =
1√
2

(

einqδ |+⟩+ e−inqδ |−⟩
)

⊗ |+⟩⊗(nq−1)

= [cos(nqδ) |g⟩+ i sin(nqδ) |e⟩]⊗ |+⟩⊗(nq−1) .
(12)

The probability to observe the excitation of the first qubit
is

P (α=0)
g→e = sin2(nqδ) ≃ n2

qδ
2, (13)

where, in the last equality, we have used nqδ ≪ 1. No-
tably, the probability is proportional to n2

q, indicating a
possible enhancement of the signal using the quantum
properties of the qubits.
We can use our circuit even in actual situations where

α is unknown. Concentrating on the case that δ ≪ 1, we
may expand the evolution operator for nq qubits as

U
⊗nq

DM ≃ 1+ iδ

nq
∑

i=1

(Xi cosα+ Yi sinα) +O(δ2), (14)

where the summation is over the operators acting on all
the qubits. For any i, the following relation holds:

Xi |±⟩⊗nq = ± |±⟩⊗nq , (15)
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may expand the evolution operator for nq qubits as

U
⊗nq

DM ≃ 1+ iδ

nq
∑

i=1

(Xi cosα+ Yi sinα) +O(δ2), (14)

where the summation is over the operators acting on all
the qubits. For any i, the following relation holds:

Xi |±⟩⊗nq = ± |±⟩⊗nq , (15)

"Decoded" state to be measured

p ∝ n2
q
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Towards wide-band: ac Stark shift

Adding one more CW tone at  

Rabi oscillation is driven by DM when  , 

ω = αdrive

ωDM = ωq ± αdrive

⟨X(t)⟩ = cos ( αDM

2 t)
⟨Y(t)⟩ = ± sin ( αDM

2 t) cos(αdrivet ± ϕDM)

⟨Z(t)⟩ = ± sin ( αDM

2 t) sin(αdrivet ± ϕDM)

Each color represents each qubit

ε=10-12

ε=10-11

Upper limit on the DM drive strength (in the unit of Rabi freq.) 




