# From concept to reality: Advancements in the MAD MAX experiment Juan P.A. Maldonado – On behalf of the MADMAX collaboration 19th Patras Workshop on Axions, WIMPs and WISPs September 19<sup>th</sup>, 2024



### **Dielectric haloscope**

arXiv:1611.05865 [PRL 118.9 (2017)]

1) Induce inverse Primakoff effect in a strong external B field

$$\overrightarrow{E_a} = -\frac{g_{a\gamma}\overrightarrow{B_e}}{\epsilon}a_0\cos(m_a t)$$

2) Boost the signal using dielectric discontinuities (constructive interference and resonance effects)

$$\beta^2 = \frac{P_{\rm sig}}{P_{\rm mirror}}$$

3) Maximize signal, minimize noise





### The experiment – Prototype closed booster



15 days data-takingRoom temperatureTwo configurations3 discs at 1.6 T B field

### The experimenters



#### Juan P.A. Maldonado on behalf of MADMAX



# Calibration and analysis procedure Booster mode identification Boost factor determination Dark matter search data analysis

### Field measurement setup





### Identification of booster mode



Experimental 0.9 identification of 0.8 the booster mode. 0.7 0.6 **Clear distinction** 0.5 of  $TE_{11}$  with respect to 0.4 parasitic/higher 0.3 order modes 0.2

0.1

Juan P.A. Maldonado on behalf of MADMAX – maldonad@mpp.mpg.de – Patras 2024

### Modeled boost factor distributions



 $\beta^2$  around 2000 with only 3 disks + mirror. Uncertainties of around 15%.

#### Juan P.A. Maldonado on behalf of MADMAX – maldonad@mpp.mpg.de – Patras 2024

arXiv:2409.11777



Juan P.A. Maldonado on behalf of MADMAX

arXiv:2409.11777: On arXiv since today!

### First dielectric haloscope ALP limit

arXiv:2409.11777: On arXiv since today!



Juan P.A. Maldonado on behalf of MADMAX – maldonad@mpp.mpg.de – Patras 2024

Opening up the system The open booster setup Experimental determination of  $\beta^2$ Dark photon run

### Open booster, 300 mm disk diameter



Open booster with 3 sapphire disks Placed at RT inside an EMC room RFI under control

### Open booster 300 mm



arXiv:2311.13359 : [JCAP04(2024)005]



Open booster with 3 sapphire disks Placed at RT inside an EMC room RFI under control Novel method: Boost factor directly reconstructed from field measurement without simulation models

### First MADMAX dark photon limit

#### arXiv:2408.02368: Submitted



# Scaling up further First Cryogenic axion search Magnet and cryostat development Physics reach

### Cold axion / dark photon searches

Single thermal cycle semi-automatic calibration

Horizontal non-magnetic cryostat developed with CERN Cryolab

1 day long axion search at 19 GHz at CERN in a 1.6 T field at 14 K system temperature

Stay tuned!



### New magnet and cryostat





Quench protection feasible

Supplies for conductor available

Currently designing, producing, and testing a demonstrator coil

Prototype cryostat delivery expected in 2025

Axion search at CERN: 2026-2028

Next: tuneable cryogenic axion search using the Morpurgo 1.6 T B field

→ DOI: 10.1109/TASC.2023.3273734: IEEE Transactions on Applied Superconductivity 33.7 (2023)

### **Physics reach forecast**



Plans for 2026-2028 at CERN (long shutdown LHC) Morpurgo magnet + prototype cryostat



### Take home message

First time a dielectric haloscope sets axion limits

World-leading limits in both dark photon and axion searches around 80 µeV

Booster quickly tuned and recalibrated, larger-range frequency scans possible

Data analysis is ongoing regarding our first cryogenic axion search

Ongoing R&D regarding B field, cryogenics, booster size, and more...

