Recent Advances of Dark Matter Search from COSINE-100 Experiment

Gyunho Yu Institute for Basic Science (Center for Underground Physics)

On behalf of COSINE Collaboration

19th PATRAS Workshop on Axions, WIMPs and WISPs

Annual modulation from DAMA/LIBRA

- DAMA/LIBRA claimed to find annual modulation signature by DM
- Compatible with the nature of DM candidate

PATRAS 2024

 $A = 0.0096 \pm 0.0008$ counts/day/kg/keV,

- $\phi = 145 \pm 5 \text{ days}$
 - $T = 0.9987 \pm 0.0008$ yr)

Annual modulation from DAMA/LIBRA

Particle Data Group : Review of Particle Physics (2024)

Annual modulation from DAMA/LIBRA

Particle Data Group : Review of Particle Physics (2024)

Direct test w/ Nal(TI) target?

Gyunho Yu

- •Located in Yangyang Underground Laboratory (Y2L), Korea (Depth : ~700m)
- Direct test of DAMA/LIBRA using Nal(TI).

COSINE-100 experiment

How to test WIMPs in COSINE-100?

Model Dependent (Finding WIMP excess)

PATRAS 2024

How to test WIMPs in COSINE-100?

Model Dependent

Model Independent

Improvements on data understanding Lowered threshold : $1 \rightarrow 0.7$ keV

COSINE-100 data is contaminated w/ PMT-induced noises

•MLP training using PSD parameters : 1.0 \rightarrow 0.7 keV (8 P.E.) threshold w/ ~20% efficiency

Improvements on data understanding **Background understanding COSINE-100 background modeling w/ Geant4 MC simulation**

Detailed calibration : Non-proportional energy response

EPJC 84, 484 (2024)

PATRAS 2024

Gyunho Yu

Model-Dependent WIMP search Spectral analysis : Spin-Independent WIMP-proton SI cross section (pb) Background + WIMP COSINE-100 1.7-year (1 kev) 30000 10 Surface ±2σ DAMA/LIBRA (DAMA QF) 10^{-2} Counts 20000 COSINE-100 3-year (0.7 keV) 10^{-3} 10 10000 10 Data/Background 10 1.1 10 0.9 10 10 5 15 10^{2} 10 Energy [keVee]

•WIMP presence with canonical WIMP model, considering Standard Halo Model

•3-year spectral analysis disfavors DAMA/LIBRA

PATRAS 2024

WIMP Mass(GeV/c²)

Model-Dependent WIMP search **Spectral analysis : Spin-Dependent**

Na (Z = 11) & I (Z = 53)

Proton-odd targets

\rightarrow sensitive in SD model

Low-mass target (Na)

 \rightarrow sensitive in low-mass WIMP search

Best-limit in a few-GeV mass range

Model-Independent test Modulation signal search

Model-Independent test **Calibration for testing DAMA**

1.Electron recoil (keVee, linear calibration)

Model-Independent test **Calibration for testing DAMA**

1.Electron recoil (keVee, linear calibration)

2. Nuclear recoil calibration (keVnr)

Different QF for DM signal interpretation

Signal region : $6.70 - 20 \text{ keV}_{nr}$ DAMA/LIBRA : 2.00 - 6 keV_{ee} COSINE-100 : 0.85 – 3.12 keV_{ee}

Model-Independent test Modulation signal search : Phase fixed

1.Electron recoil (keVee, linear calibration)

Model-Independent test Modulation signal search : Phase floated

No modulation & Disfavors DAMA (> 3σ)

Model-Independent test Modulation signal search : Amplitude summary

1.Electron recoil (keVee, linear calibration) а

Range(KeV _{ee})	Amplitude (Counts/kg/day/KeV _{ee})				
	COSINE-100	DAMA/LIBRA			
1 ~ 3	0.001 ± 0.005	0.019 ± 0.002			
1~6	0.002 ± 0.003	0.010 ± 0.001			
2~6	0.005 ± 0.003	0.010 ± 0.001			

No modulation & Disfavors DAMA (> 3σ)

2. Nuclear recoil calibration (keVnr)

Range(KeV _{nr})	Amplitude (Counts/kg/day/KeV _r					
	COSINE-100	DAMA/LIBI				
6.7 ~ 20	0.001 ± 0.005	0.019 ± 0.0				

Year **Testing DAMA & COSINE-100** operation is finished. What's next?

Next phase : COSINE-100Upgrade New experimental site : Yemilab

PATRAS 2024

Next phase : COSINE-100Upgrade **Higher light yield : New detector design**

Current encapsulation design

No quart light guide : More efficient light collection

3" PMT

: loss in scintillation light

~40 % light yield improve!

Next phase : COSINE-100Upgrade Higher light yield : Low temperature operation (-35 oC)

PATRAS 2024

Gyunho Yu

Next phase : COSINE-100Upgrade Expectations **COSINE-100U Expectation (0.35 keV threshold)**

	2024	-(1-3)		2024-(4-6)	2024-((07-08)		2024-09	2024-10	2024-11
Crystals	Assembling & Installation						Т			
Liquid Scintillator		PMT LS Pro	Install			Pouring LS	S T			
Lead Shield	Bottom		Side					Тор	Opera	ation
Electronics				Server, HVS, Monitoring					opore	
				holder						

•Plan to operate in Oct.2024

Lowest limit sensitivity in low-mass SD channel is expected

Ultra-pure crystals for COSINE-200 R&D in progress !

New Crystal development

K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018) K.A. Shin et al., JINST 15, C07031 (2020) K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

•R&D for big & pure crystals are ongoing.

Simulation of background in new crystal

EPJC 80 (2020) 814

•Ultra-pure background is expected.

Summary

COSINE-100 ruled out DAMA/LIBRA

- -Above 3σ in model-independent analysis
- -Perfect exclusion in model-depnednet analysis

(Best limit in a few GeV)

•COSINE-100U will start soon, and expected to have world competitive sensitivities for low-mass DM searches.

•Spin-dependent analysis shows competitive result in low-mass WIMP search.

COSINE-100 collaboration

15 institutes ~60 DM-ICE + members

PATRAS 2024

Thank you for your attention !

Possible DAMA explanation : Induced signal

Single exponential

Yearly Averaged (DAMA model)

PATRAS 2024

Scientific Reports **13**, 4676 (2023)

COSINE-100 data applying DAMA method gives clear modulation (~7 σ , opposite phase)

Nal(TI) experiments in the world

Latests results with

DAMA/LIBRA **ANAIS-112 COSINE-100**

PATRAS 2024

COSINE-100U New experimental site : Yemilab

PATRAS 2024

Examples of PSD parameters

Example) Likelihood on signal waveform template

$$\ln L_s = \sum_{bin} (W_S - W_t) + W_t \times \log(W_t/W_S)$$

Ultra-pure crystals for COSINE-200 R&D in progress !

New Crystal development

K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018) K.A. Shin et al., JINST 15, C07031 (2020) K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

- Produced ~ 400 kg low-background Nal powder.
- 0.7kg crystal with 0.2 counts/keV/kg/day achieved
- Further R&D going on to grow large-crystals.

PATRAS 2024

⁴⁰K & ²¹⁰Pb significantly reduced

	K (ppb)	Pb (ppb)	U (ppb)	Th
Initial Nal	248	19.0	<0.01	<0.
Purified Nal	<16	0.4	<0.01	<0.

Simulation of background in new crystal

EPJC 80 (2020) 814

Migdal Effect

Reference : PRL 123, 241803 (2019) (Xenon 1T)

PATRAS 2024

- •Nuclear recoil \rightarrow Boost of electrons \rightarrow Secondary radiation
- Large visible energy of electron recoil compared to nuclear recoil.

