Cosmology and terrestrial signals of sexaquark dark matter

Marianne Moore 2403.03972 with Tracy R. Slatyer Patras, September 19, 2024

Summary

Fonds de recherche Nature et technologies Québec

The sexaquark history

Perhaps a Stable Dihyperon*

R. L. Jaffet

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, # Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

> In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P = 0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H*) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decay systematics of the H are discussed.

no net spin nor charge stable for $1860 \le m_s \le 1890 \text{ MeV}$ Center for Cosmology and Particle Physics, Department of Physics, New York University, NY, NY 10003, USA

data are proposed which could discover it and measure its mass.

Terrestrial signals

Summary

Stable Sexaquark

Glennys R. Farrar

It is proposed that the neutral, B=2, flavor singlet sexaquark (S) composed of *uuddss* quarks, has mass $m_S \lesssim 2$ GeV. If $m_S < 2(m_p + m_e)$, it is absolutely stable, while for $m_S < m_p + m_e + m_\Lambda$, τ_S can be $> \tau_{\text{Univ}}$. Lattice gauge theory cannot yet predict m_S but indirect evidence supports the hypothesis of stability. A stable S is consistent with QCD theory and would have eluded detection in accelerator and non-accelerator experiments. If it exists, the S is a good Dark Matter candidate. Analyses of existing Upsilon decay and LHC

Can the sexaquark constitute all of dark matter?

Cosmology and terrestrial signals of sexaquark DM

Can the sexaquark constitute all of dark matter?

If not, what fraction could it consistently make up?

Cosmology and terrestrial signals of sexaguark DM

Freeze-out of WIMPs

Cosmology and terrestrial signals of sexaquark DM

Summary

no chemical potential

Kolb and Turner

Equilibrium abundance of the sexaquark

Cosmology and terrestrial signals of sexaquark DM

Summary

with chemical potential

Equilibrium abundance of the sexaquark

Cosmology and terrestrial signals of sexaquark DM

Summary

with chemical potential

Freeze-out of the sexaquark

Three main processes can lead to freeze-out

Cosmology

Freeze-out of the sexaquark

Cosmology and terrestrial signals of sexaquark DM

- To account for *all* of dark matter:
 - Sexaquarks must depart from equilibrium at early times
 - At the expanse of also producing antisexaquarks
 - Requires strongly suppressed cross sections (small B's)

Cosmology

Annihilation signals

- Directly in a detector (e.g. 2303.03416)
- In the Earth core, producing
 - anomalous heating (e.g. 0705.4298, 1909.11683)
 - neutrinos reaching a near-surface detector (e.g. 2309.10032)

- Upscattered to a test detector (e.g. MM+ 2202.08840)

Summary

Scattering signals

 Standard direct detection e.g. in CRESST-III, DarkSide-20k unless $\sigma_{\gamma n}$ is too large

Cosmology

Terrestrial signals

Annihilation in Super-Kamiokande

Why Super-Kamiokande?

- large running time
- large volume
- easy to distinguish annihilation signature (invariant mass, momentum)
- same cuts as $n-\bar{n}$ oscillations and nucleon decay

Annihilation in Super-Kamiokande (wind)

В Cosmology and terrestrial signals of sexaquark DM

Terrestrial signals

Summary

$f_{\bar{S}}$ from freeze-out

Cosmology

Annihilation in Super-Kamiokande (wind)

B Cosmology and terrestrial signals of sexaquark DM

Terrestrial signals

Annihilation in Super-Kamiokande (accumulated)

В Cosmology and terrestrial signals of sexaquark DM

Terrestrial signals

Summary

$f_{\bar{S}}$ from freeze-out

Cosmology

Annihilation in Super-Kamiokande (accumulated)

В Cosmology and terrestrial signals of sexaquark DM

Terrestrial signals

Cosmology

Summary

Cosmology and terrestrial signals of sexaquark DM

Cosmology

Summary

Cosmology and terrestrial signals of sexaquark DM

Summary

by cosmology

Cosmology

Summary

Cosmology and terrestrial signals of sexaquark DM

Summary

by cosmology

by direct detection

Cosmology

Summary

Cosmology and terrestrial signals of sexaquark DM

- by cosmology
- by direct detection
- by Super-Kamiokande

Cosmology

Summary

Cosmology and terrestrial signals of sexaquark DM

- by cosmology
- by direct detection
- by Super-Kamiokande

likely the only option for survival