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What is a White Dwarf?

• Final evolutionary stage of stars not massive enough to burn C

• Cool by emission of photons, neutrinos, and potentially axions

• No nuclear burning in core

• Core is electron-degenerate

• Composition of typical WD
(MWD ∼ 0.6 M⊙):

▶ C/O core (isothermal)
▶ He layer
▶ Thinner outer H envelope∗

• Mass and envelope thickness
affect cooling evolution
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H
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a

∗ Envelope thickness parameterised by relative mass: qH ≡ MH/MWD
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Globular Clusters

• Group of stars tightly bound by gravity, spherically-distributed in space

• Typically very old and well-populated with WDs

• Provide populations of WDs whose progenitor stars formed from the
same protostellar material at the same time

• The WDs have approximately the same mass and a constant birthrate

• This is in contrast to WDs in the Galactic disc, which have different
masses and a time-varying birthrate

• 47 Tucanae is a very well-populated and well-studied globular cluster

For WD population in a globular cluster:

dN

dL
= Ṅ

dt

dL
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Axions and White Dwarf Cooling

Axion bremsstrahlung from electrons scattering on ions:
Axion Bremsstrahlung 1
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1

• Axion-electron coupling enables the production of axions in the
electron-degenerate core of a WD through axion bremsstrahlung

• Emission of axions provides additional WD energy loss mechanism

• Affects cooling rate (dL/dt) at early cooling times → modifies dN/dL

• Axions have been suggested as explanation of cooling anomaly for
white dwarfs in Galactic disc
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Cooling Models
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Example cooling curves shown for MWD = 0.5388 M⊙

• Stellar evolution simulations performed using MESA
• Cooling model parameter grid: MWD, log10 qH , and ma

• Degeneracy between axion mass and envelope thickness
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Magnitudes

Luminosity:

L = 4πr2
∫

Fλ dλ

Apparent magnitude (measured at detector):

mλ −mλ,Vega = −2.5 log10

(
Fλ

Fλ,Vega

)
Absolute magnitude (measured at distance of 10 pc):

Mλ = mλ − 5 log10

(
d

10 pc

)
− Aλ

Fλ = energy flux of photons from source
Aλ = extinction due to absorption and scattering from interstellar dust
d = distance of source from detector (i.e. distance to cluster)
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Bolometric Corrections
Move models from theory space to observation space:

• Telescopes measure flux through bandpass filter (label: i)

• Calculate model-predicted magnitude for filter i from luminosity (L)
using bolometric corrections (BCi )

Bolometric correction:
BCi ≡ Mbol −Mi

Bolometric magnitude (measures flux of all wavelengths):

Mbol = Mbol,⊙ − 2.5 log10

(
L

L⊙

)
Model-predicted magnitude for filter i :

mi = Mbol − BCi + 5 log10

(
d

10 pc

)
+ Ai

This is before accounting for photometric errors.
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Unbinned Likelihood

lnL (θ) =
∑

i ∈ data

ln f (m1i ,m2i ,R; θ)−
∫∫

data space

f (m1,m2,R; θ) dm1 dm2

f (m1,m2,R; θ) = Ṅ

∫ ∞
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′
2

f = number density distribution → model prediction in data space
E = photometric error distribution → move from theory to data space

Data:

{m1,m2} = magnitudes (a measure of luminosity) in two filters
R = radial distance from cluster centre (in projection)

Parameters:

θ =
{
θM , Ṅ

}
, θM =

{
MWD, log10 qH , ma

}
, Ṅ = WD birthrate
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Data Analysis

• Use unbinned likelihood analysis to find best-fitting model and
constrain parameters

• Combined analysis of two sets of HST data of young WDs in 47 Tuc
▶ WFC3 observations of centre (inner field)
▶ ACS observations of surrounding ring (outer field)

• Account for energy loss due to axion emission in cooling models
▶ axion bremsstrahlung from electrons
▶ most generally parameterised by axion-electron coupling, gaee
▶ equivalently parameterised by DFSZ axion mass, ma

• Use priors for MWD and log10 qH from similar analysis of old white
dwarfs in 47 Tuc and uniform priors for everything else

▶ helps break degeneracy between log10 qH and ma
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Data Space
WFC3 ACS

F###W = magnitude for HST filter with effective wavelength λ = ### nm
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Best-Fitting Model
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ṄWFC3 = 6.91+0.82
−0.23 Myr−1

ṄACS = 3.73+0.62
−0.24 Myr−1

MWD = 0.5388+0.0000
−0.0106 M⊙

log10 qH = −3.55+0.00
−0.12

ma = 0.00+2.85
−0.00 meV



Joint Credible Regions

4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55
log10 qH

0

1

2

3

4

5

6

7

8

m
a (

m
eV

)

Credible regions of 2-dimensional marginal distribution

5 

4 

3 

2 

1 

0 

Leesa Fleury (UBC) Axion cooling of white dwarfs in 47 Tuc Patras 2024 11 / 13



1D Marginal Posterior Probability Density Functions

After marginalising over all other parameters.
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95% credible regions from these distributions:

log10 qH ≥ −3.67 , ma ≤ 2.85 meV
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Final Axion Constraints

New bound from this work (95% confidence): gaee ≤ 0.81× 10−13

Previous bounds and hints:

• Red giant branch tip of globular clusters: gaee ≤ 1.5× 10−13

• Galactic white dwarf luminosity function: gaee ≤ 2.1× 10−13

• Hints from Galactic white dwarf cooling: gaee ∼ (1.1− 2.8)× 10−13

Comparison:

• Improves upon previous leading bound by nearly a factor of 2

• Excludes parameter range hinted at by Galactic white dwarfs

Future work:

• Could improve bound further by using non-uniform birthrate priors

• May require modelling cluster relaxation effects
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