

CRESST

Direct Dark Matter Search with the CRESST-III experiment **State of the art and results**

MAX-PLANCK-INSTITUT FÜR PHYSIK

Cryogenic **Rare Event Search** with Superconducting Thermometers

Dr. Beatrice Mauri

on behalf of the CRESST collaboration

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24

The CRESST collaboration

~ 60 members from 9 institutions in 5 European countries

Cryogenic Rare Event Search with Superconducting Thermometers

Technische Universität München

CRESST

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Gran Sasso

UNIVERSITY OF OXFORD

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

З

Cryogenic detectors

- Direct detection of potential **DM** particles via scatter off target nuclei
- Operated at ~15 mK

CRESST

• Energy deposited in the target causes a proportional **temperature rise** $\Delta T = \frac{\Delta E}{C}$

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

Cryogenic detectors

- Direct detection of potential **DM particles** via scatter off target nuclei
- Operated at ~15 mK
- Energy deposited in the target causes a proportional **temperature rise** $\Delta T = -\frac{1}{2}$

nucleus in target material

 $\frac{\Delta E}{C}$

Target crystal/Absorber

- Material: CaWO₄, Si, Al₂O₃, LiAlO₂
- Volume: 4 cm³

CRESST

Cryogenic **Rare Event Search** with Superconducting Thermometers

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

Cryogenic detectors

- Direct detection of potential **DM particles** via scatter off target nuclei
- Operated at ~15 mK
- Energy deposited in the target causes a proportional **temperature rise** $\Delta T =$

Target crystal/Absorber

- Material: CaWO₄, Si, Al₂O₃, LiAlO₂
- Volume: 4 cm³

CRESS

Temperature sensor

- W Transition Edge Sensor (TES)
- Operated in the middle of its superconducting transition

Cryogenic **Rare Event Search** with Superconducting Thermometers

 $\frac{\Delta E}{C}$

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

Cryogenic detectors

- Direct detection of potential **DM** particles via scatter off target nuclei
- Operated at ~15 mK
- Energy deposited in the target causes a proportional **temperature rise** $\Delta T =$

Target crystal/Absorber

- Material: CaWO₄, Si, Al₂O₃, LiAlO₂
- Volume: 4 cm³

CRESS

Temperature sensor

- W Transition Edge Sensor (TES)
- Operated in the middle of its superconducting transition

Cryogenic Rare Event Search with Superconducting Thermometers

Light detector (LD)

- Material: Silicon-On-Sapphire (SOS) wafer
- Coupled to a scintillating target crystal
- Equipped with TES
- Used for particle discrimination

Cryogenic detectors

- Direct detection of potential **DM** particles via scatter off target nuclei
- Operated at ~15 mK
- Energy deposited in the target causes a proportional **temperature rise** $\Delta T =$

Target crystal/Absorber

- Material: CaWO₄, Si, Al₂O₃, LiAlO₂
- Volume: 4 cm³

CRESS

Temperature sensor

- W Transition Edge Sensor (TES)
- Operated in the middle of its superconducting transition

Cryogenic Rare Event Search with Superconducting Thermometers

 $\frac{\Delta E}{C}$

Light detector (LD)

- Material: Silicon-On-Sapphire (SOS) wafer
- Coupled to a scintillating target crystal
- Equipped with TES
- Used for particle discrimination

CRESST-II: 1st run Sharply rising energy spectrum below 200 eV

CRESST-III 1st run:

- 10 detector modules
- Goal: low threshold

Detector

- Target: CaWO₄
- Exposure: 3.64 kg days
- Baseline resolution: 4.6 eV
- Nuclear recoil threshold: 30.1 eV

Best sensitivity under standard assumption in range $0.16-1.8 \text{ GeV/}c^2$

CRESST

<u>Phys. Rev. D 100, 102002</u>

Cryogenic Rare Event Search with Superconducting Thermometers

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

CRESST-II: 1st run Sharply rising energy spectrum below 200 eV

CRESST-III 1st run:

- 10 detector modules
- Goal: low threshold

Detector

- Target: CaWO₄
- Exposure: 3.64 kg days
- Baseline resolution: 4.6 eV
- Nuclear recoil threshold: 30.1 eV

The understanding of this LEE is fundamental in order to further improve the sensitivity to DM

CRESST

Phys. Rev. D 100, 102002

Cryogenic Rare Event Search with Superconducting Thermometers

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

- Preparation for the following run: **detector design modifications**

CRESST-II: 2nd run

LEE origins? Multiple detector designs to find out

• Different LEE spectral shape found in multiple identical detectors

1.Material dependence → different target materials (CaWO₄, Al₂O₃, LiAlO₃, Si)

CRESST-II: 2nd run

LEE origins? Multiple detector designs to find out

1.Material dependence → different target materials (CaWO₄, Al₂O₃, LiAlO₃, Si) 2.**Stress holder related** → two holding systems (sticks, clamps)

CRESST-II: 2nd run

LEE origins? Multiple detector designs to find out

1.Material dependence → different target materials (CaWO₄, Al₂O₃, LiAlO₃, Si) 2.Stress holder related → two holding systems (sticks, clamps) 3.Intrinsic stress → different crystalline structure

CRESST-II: 2nd run

LEE origins? Multiple detector designs to find out

1.Material dependence → different target materials (CaWO₄, Al₂O₃, LiAlO₃, Si) 2.Stress holder related → two holding systems (sticks, clamps) 3.Intrinsic stress → different crystalline structure

CRESST-II: 2nd run

LEE origins? Multiple detector designs to find out

4.**Scintillation light** → scintillating materials removed (reflecting foil, sticks, scintillating crystals)

1.Material dependence → different target materials (CaWO₄, Al₂O₃, LiAlO₃, Si) 2.Stress holder related → two holding systems (sticks, clamps) 3.Intrinsic stress → different crystalline structure

CRESST-II: 2nd run

LEE origins? Multiple detector designs to find out

4.**Scintillation light** → scintillating materials removed (reflecting foil, sticks, scintillating crystals) 5.**Detector geometry** → LD as target detector

CRESST-II: 2nd run LEE: observations

CRESST

10.21468/SciPostPhysProc.12.013

Cryogenic **Rare Event Search** with Superconducting Thermometers At least two components in the LEE rate:

• Slow component:

LEE rate constantly decreases with time $(149 \pm 40 \text{ d})$

• Fast component:

LEE rate "resets" after warming up the cryostat to O(10 K) (18 ± 7 d)

→ DM, internal and external radioactivity are excluded as main LEE source

CRESST-II: 2nd run LEE: observations

CRESST

10.21468/SciPostPhysProc.12.013

Cryogenic **Rare Event Search** with Superconducting Thermometers → LEE is observed in every material, geometry and holding system

→ LEE rate **doesn't scale** with mass

None of the modifications had a significant impact on the LEE

Open possibilities

- → holding-induced stress
- \rightarrow sensor induced stress

CRESST-II: 3rd run

What else? New detector designs

Strategy

- 4 SOS wafers
- Stress-free holding

Double TES

- CaWO₄ crystal
- Stress-free holding
- Sensitive to events originated in the TES
- Coupled to LD

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

 \rightarrow 3 new detectors designs developed \rightarrow designs tested above-ground \rightarrow Currently installed at LNGS!!!

Double TES Stack

• Sensitive to events originated in the TES • Full surface coverage of inner crystals

JLTP s10909-024-03154-6

Mini Beaker

- Instrumented holder: target crystals in contact just with other detectors
- Surface coverage by silicon beaker
- Sensitive to holder transmitted events

CRESST-II: 3rd run

What else? New detector designs

Strategy

Double TES

- CaWO₄ crystal
- Stress-free holding
- Sensitive to events originated in the TES
- Coupled to LD

CRESST

- 4 SOS wafers
- Stress-free holding

Cryogenic Rare Event Search with Superconducting Thermometers

→ 3 new detectors designs developed \rightarrow designs tested above-ground \rightarrow Currently installed at LNGS!!!

Double TES Stack

• Sensitive to events originated in the TES • Full surface coverage of inner crystals

JLTP s10909-024-03154-6

Mini Beaker

- Instrumented holder: target crystals in contact just with other detectors
- Surface coverage by silicon beaker
- Sensitive to holder transmitted events

Double TES

CRESST

- 2 TESs, independently read-out
- CaWO₄ target crystal (20x20x10 mm³)
- Stress-free holding
- Scintillating parts removed (except for the target)
- 2 collimated ⁵⁵Fe sources
- Proof of principle measurement: TESs can be simultaneously optimised

Cryogenic Rare Event Search with Superconducting Thermometers

Scenario

- Events in the absorber
- \rightarrow the 2 TESs must measure the same amount of energy
- Events in the sensor/ close to one of the sensors
- → different response

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

Double TES

CRESST

- 2 TESs, independently read-out
- CaWO₄ target crystal (20x20x10 mm³)
- Stress-free holding
- Scintillating parts removed (except for the target)
- 2 collimated ⁵⁵Fe sources
- Proof of principle measurement: TESs can be simultaneously optimised

Cryogenic Rare Event Search with Superconducting Thermometers

19th Patras Workshop on Axions WIMPs and WISPs | 16-20 Sept. 24. | Dr. Beatrice Mauri

Double TES

CRESST

- 2 TESs, independently read-out
- CaWO₄ target crystal (20x20x10 mm³)
- Stress-free holding
- Scintillating parts removed (except for the target)
- 2 collimated ⁵⁵Fe sources
- **Proof of principle** measurement: TESs can be simultaneously optimised

Cryogenic Rare Event Search with Superconducting Thermometers

arXiv 240402607 Accepted by EPJC

 \rightarrow All populations are genuine pulses → Discrimination possible with double TES

CRESST

LEE: above-ground measurement observations

- Sensor related events contribute to LEE \rightarrow LEE has more than one component
- Rate rise towards low energy for shared events
- •LEE time dependence compatible with what was previously measured by CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

More tests performed: Double TES also applied to SOS wafers

CRESST-III: novel calibration technique

Standard calibration 5.9 X-ray line from ⁵⁵Fe

CRESST

New technique proposed by the CRAB collaboration

Thermal neutron capture: ¹⁸² W(n, γ) ¹⁸³W

 \rightarrow De-excitation with a single γ (6.1 MeV)

 $\mathbf{proptic} \quad \mathbf{puclear} \quad \mathbf{pcoil} \quad \mathbf{112} \quad \mathbf{A} \quad \mathbf{W}$

JINST 16 P07032

→→ Mono-energetic nuclear recoil 112.4 eV

Nuclear recoil peaks observed around the predicted value in multiple detectors:

CRESST low energy calibration confirmation

Cryogenic **Rare Event Search** with Superconducting Thermometers

CRESST-II: DM results

Results: Silicon-On-Sapphire (SOS) wafer

New calibration method

- vacuum ultraviolet (VUV) luminescence @ 7.6 eV from the Al₂O₃ crystal irradiated by ⁵⁵Fe source
- precise calibration at threshold

- Detector: SOS wafer
- Exposure: 0.14 kg·d

CRESST

• Energy threshold: 6.7 eV

Cryogenic Rare Event Search with Superconducting Thermometers

Sensitive to DM masses below 100 MeV/C^2

• Detector: LiAlO₂

CRESS

- Exposure: 1.161 kg·d
- Energy threshold: 83.6 eV

The European Physical Journal C 82(3):207

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST-II: DM results

Cros Dark

Current status News from the underground

February 2024 Detectors with new designs installed at LNGS

Cryogenic Rare Event Search with Superconducting Thermometers

April 2024

3rd run started

- Detectors optimisation: done
- Calibration & data taking: ongoing

CRESST Cryogenic **Rare Event Search** with Superconducting Thermometers

• Non calibrated spectra below threshold

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST

• Inverted stream data: non calibrated noise spectra from empty baselines

CRESST-II Phase II LEE origins? Multiple detector designs to find out

$CaWO_4$ (TUM)

CRESST

CaWO₄ (commercial)

Cryogenic **Rare Event Search** with Superconducting Thermometers

 Al_2O_3

Si

LiAlO₂

Double TES

CRESST

- 2 TESs on the same crystal, independently read-out
- Stress-free holding
- No scintillating parts
- 2 collimated ⁵⁵Fe source
- Proof of principle measurement: TESs can be simultaneously optimised

<u>arXiv 240402607</u> Accepted by EPJC

SOS wafer (20x20x0.4 mm³)

	TES 1-L	TES 2-L
Energy threshold [eV]	27	20.5
$\sigma_{Baseline}\left[eV ight]$	5.4 ± 0.1	4.1 ± 0.1
$\sigma_{\rm Fe}$ [eV]	149.0 ± 3.8	121 ± 2.3

		2000
		1800
Double TES	ies	1600
	Entr	1400
 2 TESs on the same crystal, independently read-out 		1200
 Stress-free holding 		1000
 No scintillating parts 		
• 2 collimated ⁵⁵ Fe source		800
• Proof of principle measurement: TESs can be		600
simultaneously optimised		400
		200
		(

Improved σ_{Fe} combining the outputs from both TESs: (90.0 ± 1.1) eV

CRESST

<u>arXiv 240402607</u> Accepted by EPJC

Cryogenic **Rare Event Search** with Superconducting Thermometers

CRESST

arXiv 240402607 Accepted by EPJC

- \rightarrow Single TES and absorber events show differences in pulse shapes
- → Discrimination possible with
- double TES

CRESST-II: 1st run

Detector A, assuming no LEE

Detector A

Observation of a low energy nuclear recoil peak im the neutron calibration data of the CRESST-III experiment

Phys. Rev. D 108, 022005

First results from the CRESST-III low-mass dark matter program

Phys. Rev. D 100, 102002

First observation of single photons in a CRESST detector and new dark matter exclusion limits

arXiv:2405.06527

Cryogenic Rare Event Search with Superconducting Thermometers

Testing spin-dependent dark matter interactions with lithium aluminate targets in CRESST-III

Phys. Rev. D 106, 092008

Probing spin-dependent dark matter interactions with ⁶Li

The European Physical Journal C 82(3):207

A Low Nuclear Recoil Energy Threshold for Dark Matter Search with CRESST-III Detectors

J.Low Temp.Phys. 193 (2018)

...and many others!

