

Picture from https://patrascasale.gr/en/blog/rio-antirio-bridge

Center for Axion and Precision Physics Research

CAPP's Main Axion eXperiment (CAPP-MAX)

with High-Temperature Superconducting Cavity

19th September 2024____

Ohjoon Kwon on behalf of

2222

CAPP-PACE team & all CAPP members who participated in the CAPP-MAX

IBS-CAPP, Daejeon, South Korea

16-20 Sep 2024

PATRAS WORKSHOP 2024

MALEN BERT

HTS cavity is implemented to CAPP-MAX!!

- > 10⁶ Q-factor!!
- In 12 tesla magnetic field
- > 33.8 L of large volume

3MHz/day @~1DFSZ sensitivity → 3MHz/day @ ~0.65DFSZ

- Axion haloscope with high Q-factor cavity
- HTS-ReBCO microwave cavity in CAPP
- CAPP's Main Axion eXperiment
- CAPP's main axion experiment (CAPP-MAX) w/ ReBCO cavity
- Summary & Future plan

4

R. Cervantes et al., Phys. Rev. D 110, 043022

D. Kim et al., Physics A (2020), 03

Axion haloscope: High-Q boosts axion scanning speed

High-Q boosts axion scanning speed

High Q-factor microwave cavity

inside strong magnetic field

needed !!

Superconducting cavity?

16-20 Sep 2024

PATRAS WORKSHOP 2024

rare-earth barium copper oxide

High-temperature superconductor (HTS): ReBCO

	100 mK 8 GHz	R _s (B = 0 T) (Ohm) (ref. Rs _{cu} ~7e-3)	R _s (B = 8 T, c) (Ohm) (ref. Rs _{cu} ~7e-3)	Critical Field (H _{c2})	Depinning Frequency
*LTS	Nb	~ 1E-6			
	NbTi Gatti <i>et al.</i> PRD(2019)	~ 1E-6	~ 4e-3	~ 13 T _{small}	~ 45 GHz
	Nb ₃ Sn Alimenti <i>et al.</i> SUST(2020)	~ 1E-6	?	~ 25 T	~ 6 GHzan
**HTS	Bi-2212 Bi-2223	~ 1E-5	?	> 100 T (ab) Larbalestier <i>et al.</i> Nature(2001)	?inning
	TI-1223	~ 1E-5	~ 1e-4 Calatroni <i>et al.</i> SUST(2017)	> 100 T (ab) Larbalestier <i>et al.</i> Nature(2001)	12 — 480 MHz Calatroni <i>et al.</i> SUST(2017)
	ReBCO	~ 1E-5 Ormeno <i>et al.</i> PRB(2001)	~< 1e-4 Romanov <i>et al.</i> Scientific Reports(2020)	> 100 T (ab) Larbalestier <i>et al.</i> Nature(2001)	Strong Pinning 10 — 100 GHz Romanov <i>et al.</i> Scientific Reports(2020)
	*low temperature superconductor From Dr. D				

*low temperature superconductor

**high temperature superconductor

TUTE OF

ΚΔΙΣΤ

M. J. Lancaster, "Passive microwave device applications of HTS", Cambridge University Press (2006).

IEEE Trans. Appl. Supercond. 23 (2013) 6601205

Multi-layered structure

- \checkmark Weak links at grain boundaries degrades surface resistance.
- ✓ *Biaxially textured structure is essential*

Impractical to construct 3D microwave cavity

KAIST

> **TM010** mode is compatible with vertical division

Parallel polarization of E-field and the cutting direction doesn't harm Q-factor much

 O. Kwon et al, Phys. Rev. Lett. **126**, 191802 (2021)

Dr. Woohyun's innovative idea: what if the cavity is composed of multiple pieces of HTS sheets or wires?

PATRAS WORKSHOP 2024

ΚΔΙΣΤ

Flexibility of the ReBCO film + split cavity structure

Well-textured flexible ReBCO tapes

With the help of Prof. Dojun Youm

Split cavity structure

→ N-polygon structure with N gaps

PATRAS WORKSHOP 2024

* Phys. Rev. A. **17**, L061005 (2022)

16-20 Sep 2024

CAN we use this HTS cavity

for taking real axion data??

How to tune the cavity w/o losing Q-factor!

0

0.1

-0.1

-0.1

Simulation result (perfect conductor w/ 0.2mm vertical gap) D273mm • TM 010 mode 1.0E+07 9.0E+06 8.0E+06 0.4 7.0E+06 -00 4.0E+06 OF 4.0E+06 6.0E+06 0.2 3.0E+06 2.0E+06

1.0E+06

0.0E+00

0.1 D80mm rod 0

50

Q drops to under 400k

Comsol simulation by Dr. Danho

150

100

Angle (degree)

CAN we use this HTS cavity

for taking real axion data??

Two approaches

Changing tuning mechamism w/ azimuthal symmetry (or no tuning)

Electrically blocking all the gaps

Ex3) moving the tuning rod in the cavity center vertically

10mm movement – 30MHz frequency tuning

(2.27-2.30GHz)

1st approach: w/ azimuthal symmetry

Ex1) Dielectric metamaterial tuning of TM0n0 mode

Ohjoon Kwon, Patras 2019

Ohjoon Kwon, Patras 2019

17

1st approach: w/ azimuthal symmetry

Ex2) Superfluid Liquid Helium tuning method By Dr. HeeSu Byun

KAIST 1971 1971 1971

No big change of

Cavity form factor & Cavity Q-factor

1st approach: w/ azimuthal symmetry

Vertical movment of sapphire rod
Axion experiment performed
*Dr. D.Ahn, Patras2022

No tuning
AQN experiment performed
*J. Kim's talk on Wednesday

Superfluid LHe tuningUnderway

*Dr. H.Byun, Patras2023

16-20 Sep 2024

PATRAS WORKSHOP 2024

Cover all the gap electrically!!

- Conventional tuning is available
- Easy to harm HTS surface during electrical connection (heat, chemical) less Q factor than 1st approach

Cover all the gap electrically!!

PATRAS WORKSHOP 2024

ΚΔΙΣΤ

Cover all the gap electrically!!

- Conventional tuning is available
- (heat, chemical) less Q factor than 1st approach

Consiering the size

Applicable to CAPP-MAX experiment right away

CAPP's main axion experiment (CAPP-MAX)

**Phys. Rev. X 14, 031023 (2024)

- CAPP's flagship experiment to search for axion above 1GHz
- Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) sensitivity

•

 \bullet

By Leiden PATRAS WORKSHOP 2024

JPA (quantum amplifier) $> 1 \, \text{GHz}$ RIKEN

Large cavity

- maximum volume
- high Q
- easy cooling
- frequency tunable

CAPP's flagship experiment to search for axion above 1GHz

12 Tesla SC magnet 320mm bore diameter By Oxford. Inc

Dilution refrigerator T_{base} ~ 5.6 mK

Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) sensitivity

*Phys. Rev. Lett. 130, 071002 (2023). **Phys. Rev. X 14, 031023 (2024)

TM010

25

50

75

Angular position [deg]

1000

Ultra-light cavity (ULC) for CAPP-MAX

0

1.05

16-20 Sep 2024

1.15

1.10

 v_c [GHz]

100 125 150 175

ΚΔΙΣΤ

1971

-80

6-06 Transmission [dB] Ахіон quest 2024

-95

Recent progress

**Phys. Rev. X 14, 031023 (2024)

- 1.024-1.18GHz scan completed

- T_{phy} ~ 30mK
- T_{sys} ~ 230mK
- 3 parallel JPAs readout
- 3MHz/day in DFSZ sensitivity

PATRAS WORKSHOP 2024

Covering HTS on copper parts

On side wall

Cavity top-outer plate

Cavity top-inner plate

Connecting to endcaps \rightarrow cavity frame!

Gearbox (~1:20) is designed to move HTS tuning rod

Full HTS cavity in CAPP-MAX system

During cooling down @1.163 GHz

w/ frequency tuning

- The unloaded Q-factor: 0.5 1.2 milion. Q_{average} ~ 0.8 milion
- Gearbox works well, <u>20V</u> piezo bias voltage can tune the cavity

16-20 Sep 2024

PATRAS WORKSHOP 2024

(b) Combined efforts on CAPP-MAX

32

CAPP-MAX run: 6JPAs are installed

(Dr. Sergey Uchakin presented on Tuesday)

The engineering run has started

Quality factor 2000000 1500000 🔵 Quality factor 1000000 500000 . 0 20:34 20:36 20:38 20:40 current 171932 924591

w/ 11.2 tesla, we achieved 1M around 1.3GHz

CAPP-MAX specification

	<u>This run</u>	<u>Previous run</u>
Frequency range:	1.2-1.49 GHz	1.02-1.18 GHz
MXC temperature:	22 mK	MXC temperature: 30 mK
Cavity top temperature:	25 mK	Cavity top: 40 mK
Cavity bottom temperature:	45 mK	Cavity bottom: 45 mK
System noise:	~210 mK	System noise: ~230 mK
Average B-field:	10.8 tesla	Average B-field: 10.5 tesla
Cavity volume:	33.8 liter	Cavity volume: 37 liter
Cavity Q-factor:	600k-1.2M	110k

16-20 Sep 2024

1. w/ 0-field

We took darkphoton data around 1.49GHz

- Data taking time in each step: ~30seconds
- Tuning step: 2kHz
- Bin size : 10Hz
- Time efficiency: ~0.7

2. w/ 11.2 tesla-field

We took data around 1.3GHz

3MHz per day with 0.6-7 DFSZ sensitivity

Pre-pre-pre... liminary grand spectra analyzed last night by Dr. Jinsu, Mr. Jiwon Lee

When # of rods = 4, very promising

L=rod_D+2

Frequency

28

1.95

1.9

1.8 1.75

1.7

1.65 1.6

1.55

1.5

18

0.78

1.85

Q-factor

CST MWS result

- High Q-factor cavity boost axion scanning speed.
- HTS-ReBCO is the promising material for high Q-factor within a strong magnetic field.
- CAPP has achieved 10⁷ Q-factor even inside 8T magnetic field.
- Large size (>30L) HTS cavity is assembled for 1.2-1.5 GHz and the Q-factor of the cavity is around 10⁶ in the 11.2 tesla magnetic field
- Engineering run is underway!