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Goal:
Describe axion DM distribution on sub-galactic scales,
relevant for all post-inflationary axion searches

Results:
Address minicluster “worst-case” scenario
where all axions are bound in clumped objects

Present a first numerical study
of the stream density in the Solar neighbourhood
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PQ phase transition
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Axion minivoids

® Most of DM axions (~80%) are bound in MC at the end of
the simulation, while occupying 1% of the volume

e Minivoids (~pc size) largely take the simulation volume,

stable at z ~ 107

e Density in minivoids is ~10% of the large-scale average value

worst case scenario
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Using information from numerical simulations,
we run a Monte Carlo analysis and find:

® Stream-to-void enhancement of ~7

e (O(1000) overlapping streams at a given point

® Overall stream energy adds up to ~80% of the

measured value of oM (coupling rescaling of

~1.2)

e Narrow lines typically lasting days-years



Streams in the Solar neighbourhood
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® Stream-to-void enhancement of ~7

Using information from numerical simulations,
we run a Monte Carlo analysis and find:

e (O(1000) overlapping streams at a given point

® Overall stream energy adds up to ~80% of the
measured value of oM (coupling rescaling of

e Narrow lines typically lasting days-years



Summary

Miniclusters, voids and streams are a smoking guns of the post-inflationary axion dark matter
scenario

In the minivoids, the energy density is only 10% of the large-scale measured value, leading to
substantial sensitivity suppression in all haloscopes

With current modelling of tidal disruption, we expect the axion DM signal to reach ~80% of
the large-scale measured value, with thousands of overlapping streams at each point

If haloscopes can measure the axion signal with high-enough frequency resolution, streams
reveal a spiky lineshape that can distinguish pre- and post-inflation axion DM



Additional slides




Stream duration and dispersion velocity
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Cosmological timeline

Number density

PQ phase transition Cold axion production conserved Gravitational collapse
>
| | | >
N-body Monte Carlo
Klein-Gordon (relativistic) ‘ Vlasov-Poisson (collisionless) ‘ Minicluster orbits
Schrodinger-Poisson (non-relativistic limit) >~ 10° Non-relativistic CDM ~ ~ 90 Stellar encounters

jaxions gadget-4
(J. Redondo, A. Vaquero) (V. Springel)

github.com/veintemillas/jaxions wwwmpa.mpa-garching.mpg.de/gadget4/



Axion streams at solar position
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