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fundamental physics using precision low-energy measurements.
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QDM Lab Precision Metrology: See www.qdmlab.com

Metrological Systems:

Photonic

• WGM Resonators 
• Specially Designed 

Microwave Cavities

Acoustic

• Superfluid 
• BAW Resonator

Science of precise 
measurement

Physics at low 
energies

Atomic/Spins
• H - Maser 
• Atomic Clocks 
• Spin Waves 
• Spin Ensembles in Solids



Motivation: Fundamental Physics

High frequency gravitational waves

Quantum gravity Dark Matter

The standard model

General Relativity

Lorentz invariance violations Minimum length
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Scalar Field Dark Matter

RECENT PUBLICATIONS

DETECTOR COMPARISON: Defining Instrument 
Sensitivity independent of signal (Spectral)

Axion ED Poynting 
Theorem:  

Standardised way of 
Calculating Sensitivity

Axions and Magnetic Charge

UPLOAD 
Low-mass 

Axions

ANYON 
AXION 
Helicity 

ORGAN: Axion Dark Matter
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RECENT PUBLICATIONSLow Noise Oscillators

Detecting UHF GWs? MAGE

Detect Gravitons?

Tests of Quantum Mechanics / Gravity



STATUS AND PLANS
CURRENT AXION DM 

PROGRAMS

ORGAN

UPLOAD

ADMX 
Collaboration

TWISTED ANYON

NEW AXION DM 
PROGRAMS

AXION-MONOPOLE 
COUPLINGS

SCALAR DM PROGRAM

BULK ACOUSTIC WAVE: 
OSCILLATING 

FUNDAMENTAL 
CONSTANTS 

MAGE

ELECTROMAGNETIC 
TECHNIQUES

NEW SCALAR DM PROGRAM
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ℋp =
2Im[ ∫ Bp( ⃗r) . E*p ( ⃗r)dτ]

∫ Ep( ⃗r) . E*p dτ ∫ Bp( ⃗r) . B*p ( ⃗r)dτ

Helicity: Single Mode with 
non-zero ∫ Bp( ⃗r ) . E*p ( ⃗r )dτ

Single Mode Sensitivity to Axions?
•Twisted ANYON Cavity 
•Upconversion limit     ma = δf

δf

fp

Acts as both 
background and 
output mode 







• Due to the helicity, ultra-light dark matter 
axions, whose mass range falls within the 
cavity bandwidth will amplitude modulate 
the cavity mode 

• Apply Poynting Theorem + Rotating Wave 
Approximation 

• Calculate that the frequency of the AM 
sidebands -> proportional to the axion mass

Dark matter detection thanks to helicity
Twisted “anyon” microwave cavities

|ℋ | (gaγγ + gaBB)Sensitivity ~

Axion-Photon Chiral 
anomaly coupling

Extra coupling if high 
energy monopole exists



Helicity

Cavity frequency (1 GHz)

Q factor

Measurement time
(1 week)

Amplitude noise (-160 dBcHz-1)

Microwave
Probe

CouplingAxion Photon
Coupling

Axion Frequency
Cold dark matter density 

(8×10−22kgm-3)

Speed of light 
(3x108 ms-1)

Twisted “anyon” microwave cavities

Oscillator to 
Stabilize

VCO  
input

fosc

ϕ

fosc ∼ fp
Output

ϕ

Output

Frequency 
Stabilisatio

VCP

ϕ
fFBosc ∼ fp

Feedback 
Amplifier



Dark matter detection in a single mode thanks to helicity

• Accesses an axion mass range very difficult 
to search 

• No external magnetic field needed

• Ability to use superconducting materials 

• Allows high Q-factors and improved 
sensitivity 

• Next: Optimising Q-factors and minimising 
read-out amplitude modulation noise for a 
detection run

Twisted “anyon” microwave cavities
https://cajohare.github.io/A

xionLim
its/
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UPLOAD Cryogenic

1) DUAL MODE Operation 

2) Low-Noise Oscillator as test 
bed for the ANYON 
experiment

Pashupati Dhakal

Jefferson Lab



⃗∇ ⋅ ⃗E 1 = gaγγc ⃗B 0 ⋅ ⃗∇ a − gaEM
⃗E 0 ⋅ ⃗∇ a + ϵ−1

0 ρe1,

μ−1
0

⃗∇ × ⃗B 1 = ϵ0∂t
⃗E 1 + ⃗Je1

+gaγγcϵ0 (− ⃗∇ a × ⃗E 0 − ∂ta ⃗B 0)
+gaEMϵ0 (− ⃗∇ a × c2 ⃗B 0 + ∂ta ⃗E 0),

⃗∇ ⋅ ⃗B 1 = −
gaMM

c
⃗E 0 ⋅ ⃗∇ a + gaEM

⃗B 0 ⋅ ⃗∇ a,

⃗∇ × ⃗E 1 = − ∂t
⃗B 1 +

gaMM

c (c2 ∇a × ⃗B 0 − ∂ta ⃗E 0)
+gaEM (∇a × ⃗E 0 + ∂ta ⃗B 0) .

gaγγ → (gaγγ, gaEM, gaMM)

 Axion-photon coupling parameter space 
is expanded from one parameter to three 

If Magnetic Charge Can Exist at High Energy 
-> Further Modifications to Axion Electrodynamics 
-> Can test the existence of Magnetic Charge through Axions
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Form Factors for Resonators  
-> Static and Time varying Background E + B Fields  

-> Calculate from Real Part of Complex Poynting Theorem

Form Factors

C1aγγ =
( ∫ ⃗B 0 ⋅ Re(E1)dV )2

B2
0V1 ∫ E1 ⋅ E*1 dV

C1EM =
( ∫ ⃗B 0 ⋅ Re(B1)dV )2

B2
0V1 ∫ B1 ⋅ B*1 dV

C1aEMm =
( ∫ ⃗E 0 ⋅ Re(E1)dV )2

E2
0V1 ∫ E1 ⋅ E*1 dV

C1aMM =
( ∫ ⃗E 0 ⋅ Re(B1)dV )2

E2
0V1 ∫ B1 ⋅ B*1 dV

gaEM → Suppressed
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Reactive Experiment with Static Background Electric and Magnetic Field -> 
Imaginary Part of Complex Poynting Theorem

arXiv:2306.13320 [hep-ph]



Axion Generated Magnetic Field-> Magnetic Circuit Readout Sensitive to gaMM
∮ Im (S1) ⋅ ̂nds

ωa
= ∫ ((

1
2μ0

B*1 ⋅ B1 −
ϵ0

2
E1 ⋅ E*1 ) −

gaEMa0ϵ0

4
(E1 + E*1 ) ⋅ ⃗E 0 +

gaMMa0ϵ0c
4

(B1 + B*1 ) ⋅ ⃗E 0)) dV

E1 + E*1 ∼ 0 B1 + B*1 ∼ 2B1

U1 =
( gaMMa0ϵ0c

2 ∫ B1 ⋅ ⃗E 0 dV)2

∫ ( 1
2μ0

B*1 ⋅ B1 − ϵ0

2 E1 ⋅ E*1 ) dV

U1 ≈
g2

aMMa2
0ϵ0

2
( ∫ B1 ⋅ ⃗E 0 dV)2

∫ B*1 ⋅ B1 dV

B̃1

⃗E 0 =
−E0 ̂z

+
−

+

−

SQUID

From current source

Input
coil

To FFT

M

13 ΩLin

Min

Vout(t)

SQUID
⃗E 0 =

−E0 ̂z
+
−

B̃1

gaMMacϵ0E0dc

=

+

−

High 
Impedance 
Amplifier

Vout(t)

θ = agaMM



18 days of continuous data taking 
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Low-Mass Sensitivity to the QCD Axion ~ 10 cm Scale Assumed 



The Axion-MonoPole-Detection   
(AMPD) Experiment 

Initial Prototype ~ 4cm 
Purchased Standard Ferrite Core

V2(t)V1(t)

High 
Impedance 
Amplifier

High 
Impedance 
Amplifier



L = 309 mH







Quartz Bulk Acoustic Wave Resonators
• Acoustic analogue to a Optical Fabry-Perot cavity. 

• Already a well established technology 

• Gram scale mode mass, macroscopic resonator 

• Extraordinarily high quality factors at cryogenic temperatures 
(~1010) 

• Impressive short - mid term frequency stability 

• Piezoelectric coupling provides excitation & readout 

• High density of modes from 1-1000 MHz





Cryogenic Resonant Bar Gravity Wave Detectors  
-> Ultra precise optomechanical position measurement  
-> Low phase noise read-out and pump oscillator

J. Phys. D: App. Phys, 26, 2276-2291, 1993 
J.Phys D: App. Phys, 28, 1729-1736, 1995
Phys. Rev. Lett, 74, 1908, 1995
Rev. of Sci. Instrum., 67(7), 2435-2442, 1996 

My PhD project 1989 ->1993 UWA PhD 
Searching GW Signal Burst at 720 Hz 

CSO

* Photons
* Ponons
* Spins



BAW 

Gravitation Wave Instrument Sensitivity



 identifying θa ∼ h

ADMX and ORGAN (purple) with current tuning locus (blue);  
0.6-1.2 GHz for ADMX and 15.2 to 16.2 GHz for ORGAN 

θa = gaγγa ∼ hg

SNR =
1

2π ∫
∞

−∞

Θa( jω)2

SθN
(ω)

dω = 4∫
∞

0

Θa( f )2

S+
θN

( f )
df

arXiv:2409.03019 Schnabel and Korobko



MAGE – Searching for new physics

Quartz BAW coupled to a DC SQUID amplifier	 Highly sensitive resonant mass antenna

Primary target:

High frequency gravitational waves 
(MHz)
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Quartz BAW coupled to a DC SQUID amplifier Highly sensitive resonant mass antenna

Mode Temperature

Gravitational Coupling
Quality Factor
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MAGE – Searching for new physics

Quartz BAW coupled to a DC SQUID amplifier Highly sensitive resonant mass antenna



MAGE – Searching for new physics

Data Analysis:

First Observational Period	 GEN 1 & GEN 2, 153 days of data, two modes



MAGE – Searching for new physics

Multimode Acoustic Gravitational Wave ExperimentWhat’s next ?

Exclude potential sources of events:

• 2 x Quartz BAW crystals 

• 2 x DC SQUID amplifiers 

• FPGA DAQ 

• Cosmic particle veto (coming soon)



MAGE – Searching for new physics

Calibration of 2nd detector

Limited by SQUID electronics 
𝑓3𝑑𝐵~3 MHz



MAGE – Searching for new physics

Calibration of 2nd detector

𝑓3𝑑𝐵~3 MHz 

Modes up to 20 MHz are still 
observable



MAGE – Searching for new physics

Development of FPGA data acquisition
National Instruments – 5763 Digitizer 

LabVIEW

32 Lock-in amplifiers across two inputs

Continuous data streaming & acquisition

In real time w/strict timing & zero data loss

16 modes in each crystal.  [MHz]

Yet to reach hardware limitation of device

4.993050, 5.080854, 5.088263, 5.505426, 5.576835, 8.392272, 9.151802, 9.409902, 9.452381, 
5.603804, 6.4326464, 8.297581, 8.400189, 9.224931, 9.246863, 9.526448, 15.731899



MAGE – Searching for new physics

Currently have new data! 8 acoustic modes in each crystal 

1 month of data -> August 2023

Optimal FIltering Search for transient events corresponding to quartz decay



The Team
QD




