

Supernova Axion Emissivity with Δ(1232) Resonance in Heavy Baryon Chiral Perturbation Theory Shu-Yu Ho PRD 107 (2023) 7, 075002 [arXiv:2212.01155]

In collaboration with J. Kim, P. Ko & J. Park (KIAS)

17/Sep/2023 19th Patras Workshop on Axions, WIMPs and WISPs

Axion emission from celestial bodies The axions can be produced copiously from some and hot dense celestial objects such as supernovae (SNe), neutron stars, and white dwarfs. 50 Kamiokande ▶e.g. SN1987A 40 Super-Kamiokande Baksan Energy (MeV 30 $\overline{\nu_e}$ NS^{*} $\overline{ u_e} + p ightarrow n + e^+$ 20 $^{ullet}a,\gamma'$ 10 Raffelt's criteria $L_{ m new \ particle} < L_{ u} \sim 3 imes 10^{52} { m erg/s}$ 10 12 2 8 Raffelt `90 Time after first event (s)

What we did

We evaluate the supernova axion emission rate including the Δ resonance in the heavy baryon chiral perturbation theory

Axion models

₩KSVZ model

Kim `79, Shifman, Vainshtein, Zakharov `80

The QCD anomaly is realized by introducing a heavy vector-like fermion.

$$\mathcal{Q} = \mathcal{Q}_L + \mathcal{Q}_R \sim (\mathbf{3}, \mathbf{1})_0$$

 $\succ \text{Interactions}: \frac{y_Q \Phi \overline{Q}_L Q_R + \text{h.c.}}{2}$

Under PQ symmetry

$$\Phi \to e^{iq_{\mathsf{PQ}}} \Phi \quad \mathcal{Q}_L \to e^{iq_{\mathsf{PQ}}/2} \mathcal{Q}_L \quad \mathcal{Q}_R \to e^{-iq_{\mathsf{PQ}}/2} \mathcal{Q}_R$$

 $\blacktriangleright \mbox{Only } \Phi$ and ${\cal Q}$ have PQ charges : $X_u = X_d = X_s = 0$ (at tree level)

Axion models

₩DFSZ model

Dine, Fischler, Srednicki `81 Zhitnitsky `80

The QCD anomaly is induced by assuming 2HDM H_u & H_d couples to the SM quark fields.

 $\blacktriangleright \text{Interactions}: \frac{H_u^{\dagger}H_d(\Phi^*)^2}{Q_L(\mathcal{Y}_u\tilde{H}_uU_R + \mathcal{Y}_dH_dD_R) + \text{h.c.}}$

Under PQ symmetry

$$\begin{split} \Phi &\to e^{iq_{\mathsf{PQ}}} \Phi \quad H_u \to e^{-iq_{\mathsf{PQ}}} H_u \quad H_d \to e^{iq_{\mathsf{PQ}}} H_d \\ Q_L &\to Q_L \quad U_R \to e^{-iq_{\mathsf{PQ}}} U_R \quad D_R \to e^{-iq_{\mathsf{PQ}}} D_R \end{split}$$

The axion as a linear combination of the CP-odd scalars can couple to the SM quarks: $X_u = \frac{\cos^2\beta}{3}$, $X_{d,s} = \frac{\sin^2\beta}{3}$ $\tan \beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}$

Supernova Axion Emissivity v.s. T

