

Latest Results from the LZ Dark Matter Experiment

Qing (Shilo) Xia Lawrence Berkeley National Laboratory

On behalf of the LZ Collaboration

19th Patras Workshop - Patras, Greece Sept. 16, 2024

LZ in the News

□ ARTICLE • MYSTERIES OF MATTER

LZ Experiment Sets New Record in Search for Dark Matter

By Lauren Biron August 26, 2024

LUX-ZEPLIN Experiment Narrows The Search For Elusive Dark Matter

August 26, 2024 | U.S. Department of Energy

Scientists at underground lab announce progress in hunt for dark matter

DV. CEADOULIGHT STAFF - ALIGHST 26 2024 3:48 PM

ScienceNews

NEWS

PARTICLE PHYSICS

The possibilities for dark matter have just shrunk — by a lot

The LZ experiment reports no signs of dark matter in their latest search

By Emily Conover

NewScientist

AUGUST 26, 2024 AT 1:00 PM

Unending search for elusive dark matter sets a new record

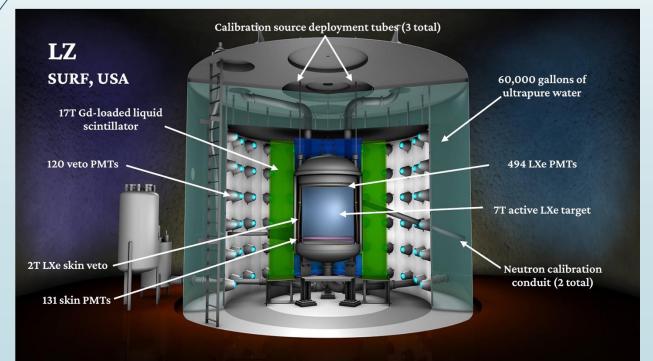
By **Eric Ralls** Earth.com staff writer

NEWS | PHYSICS

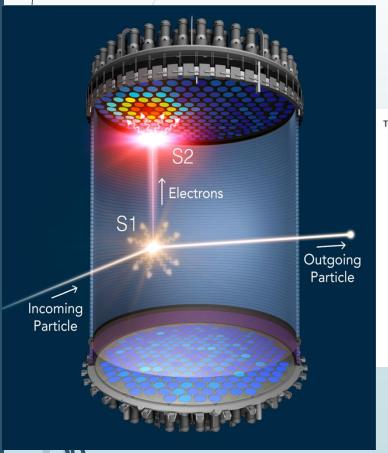
Hunt for dark matter particles bags nothing—again

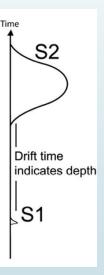
The massive LUX-ZEPLIN detector leaves few hiding places for hypothetical particles called WIMPs

26 AUG 2024 · 6:00 PM ET · BY ADRIAN CHO

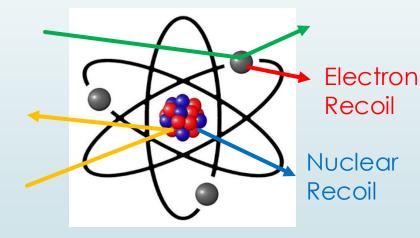

Physics

Another blow for dark matter as biggest hunt yet finds nothing


The hunt for particles of dark matter has been stymied once again, with physicists placing constraints on this mysterious substance that are 5 times tighter than the previous best



- SURF in Lead, South Dakota is the deepest underground lab in the U.S.
- L\(\tilde{\infty}\) is located on the 4850 level ~1.5 km underground
- ~106 reduction in cosmic muon flux
- Primary goal is to detect WIMPs



Dual Phase Xenon Time Projection Chamber (TPC)

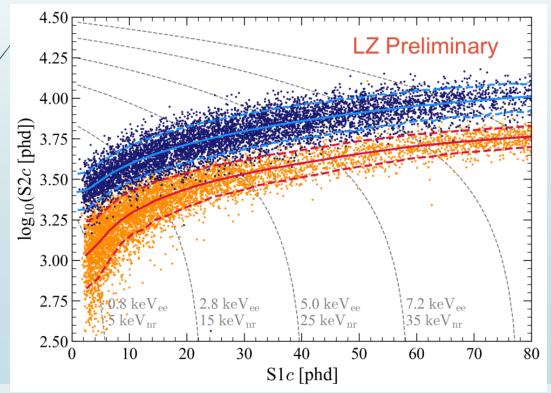
- Signal vs. background discrimination
 - Charge (S2)/ light (S1) ratio is different between electron recoil (ER) and nuclear recoil (NR)

- Electrons and gammas interact with atomic electrons, produce ER
- WIMPs (and neutrons) interact with
 Xe nuclei, produce NR

Grid Voltage Changes since LZ's First WIMP Search

- Anode voltage lowered to reduce spurious light and charge emission
- Cathode voltage lowered to mitigate light emission from the Skin detector observed after the first WIMP search
- ER/NR discrimination is not impacted

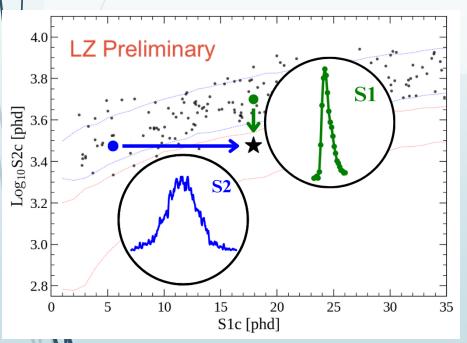
Top PMTs	anode (A) gate (G)
Bottom PMTs	cathode (C) bottom


Run	C/G/A Voltage [kV]	Drift Field [V/cm]	Livetime [d]
WS2022*	-32/-4/+4	193	60
WS2024**	-18/-4/+3.5	97	220

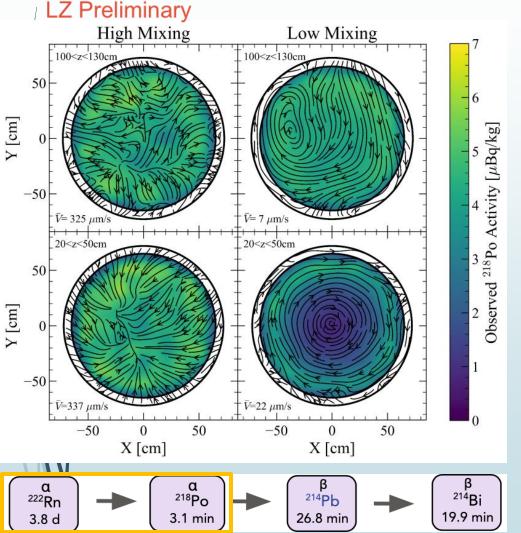
^{*}Dec. 2021 – May 2022

^{**}March 2023 - March 2024

Calibration Data in WS2024

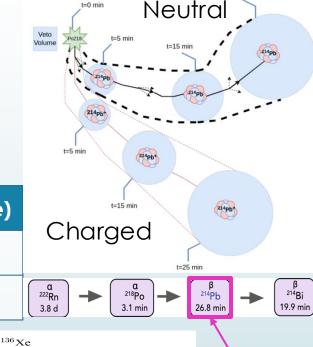

- Dark blue points: Tritium beta data (ER)* (continuum betas up to 18.6 keV)
- Orange points: DD neutron data (NR)* (2.45 MeV neutrons produced through Deuterium-Deuterium fusion)
- ER/NR discrimination: 0.2% ER leakage past the median of the NR population
 - Light gain $g1 = 0.112 \pm 0.002$ phd/photon
 - Charge gain $g2 = 34.0 \pm 0.9$ phd/electron

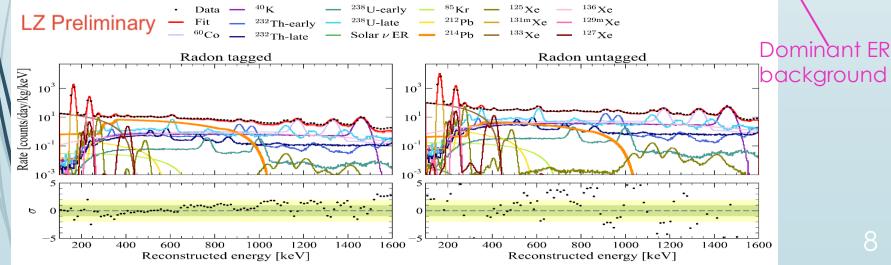
*Details about calibration source deployment: J. Aalbers et al 2024 JINST 19 P08027


Bias Mitigation in WS2024

- Bias mitigation via 'salting': fake WIMP signals injected randomly during data taking (rate bounded by WS2022 cross section)
- Salt events are revealed only after all analysis inputs are finalized

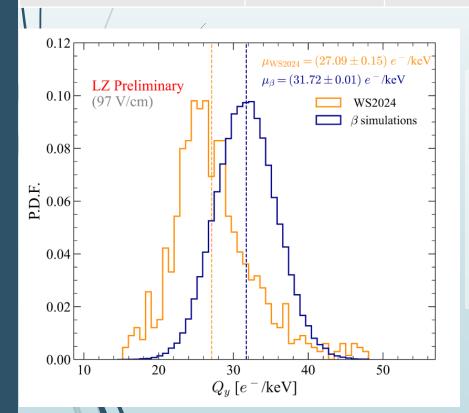
LXe Flow Control for Background Reduction in WS2024




- Data collected in two flow states through circulation and cooling systems control
- High Mixing (40.9 live days)
 - Turbulent flow
 - Uniform distribution of injected calibration sources
- Low Mixing (179.1 live days)
 - Laminar-like flow
- Liquid flow mapping using ²²²Rn-²¹⁸Po coincidences

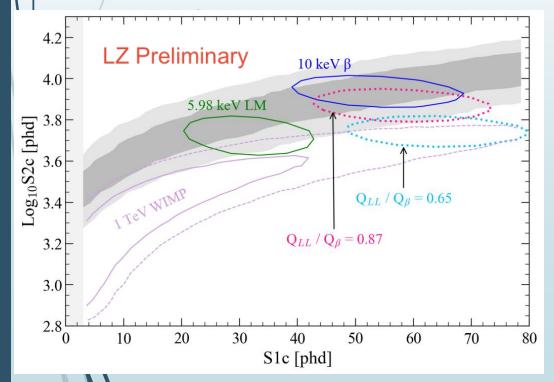
²¹⁴Pb tagging in the Low-mixing State in WS2024

- Liquid flow map enables tagging of ²¹⁴Pb
 background in the low-mixing state
- Both tagged and untagged populations are used in the final analysis
- 214 Pb reduced to 1.8 ± 0.3 µBq/kg in the untagged population (3.9 ± 0.6 µBq/kg in the total exposure)


	²¹⁴ Pb fraction	Exposure (low-mixing state)	
Tagged	60±4 %	0.3 tonne-yr	
Untagged	40±4 %	1.8 tonne-yr	

Electron Capture Decay Backgrounds

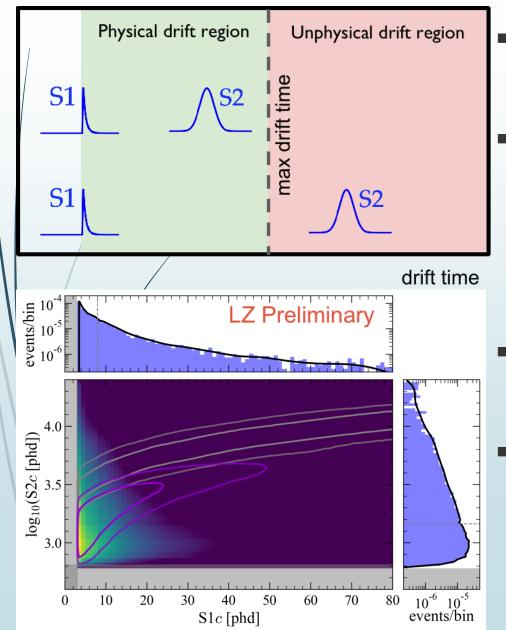
Isotope	Decay mode	Primary energy in WIMP search region	Half-life
^{127,125} Xe (neutron source activation)	Single EC	5.2 keV (L-shell)	36.3d (¹²⁷ Xe) 16.9h (¹²⁵ Xe)
¹²⁴ Xe (0.095% nat. abundance)	Double EC	5.98 keV (LM shell) & 10 keV (LL shell)	$(1.09 \pm 0.14_{\text{stat}} \pm 0.05_{\text{sys}}) \times 10^{22}$ year (LZ preliminary *)



- Single L-shell EC charge yield is suppressed compared to β 's of the same energy
 - Measured in XELDA*
 - Preliminary result from WS2024: $Q_{EC}/Q_{\beta} = 0.86 \pm 0.01$
- 124Xe LL captures is expected to display further charge yield suppression compared to single-L capture

124Xe Double Electron Capture Background Modelling

■ Background model allows ¹²⁴Xe LL-capture charge yield suppression to vary:

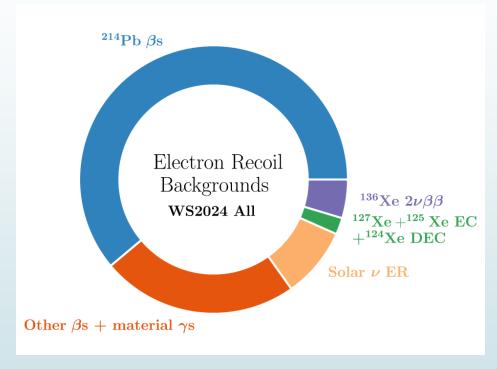


Best fit result in WS2024: $Q_{LL}/Q_{\beta} = 0.70 \pm 0.04$

Predicted event rate using KK capture (64.3 keV):

19.4 ± 3.9 events [7.1 (LM-shell) + 12.3 (LL-shell)]

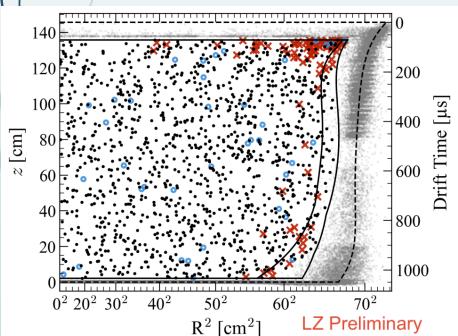
Accidental Coincidence Background



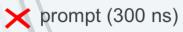
- Accidental coincidence between uncorrelated \$1 and \$2 pulses within physical drift time
- Events with unphysical drift time (UDT) are used to constrain accidental coincidence background rate

- Model PDF built from combining isolated \$1 and \$2 pulses passing all analysis cuts
- Expected counts: 2.8 ± 0.6 (sys.)

Backgrounds in WS2024

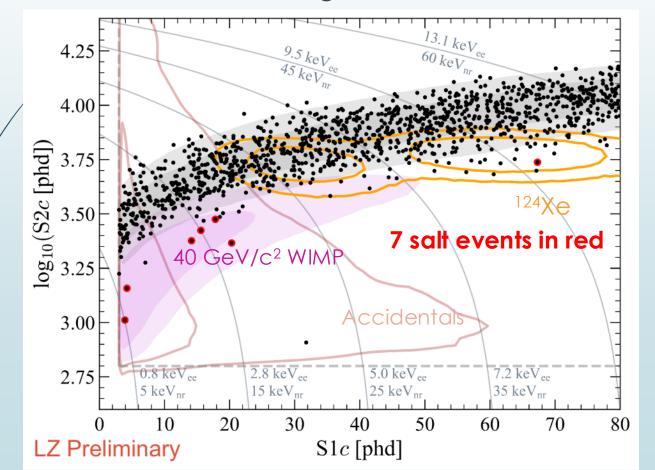

ER backgrounds:

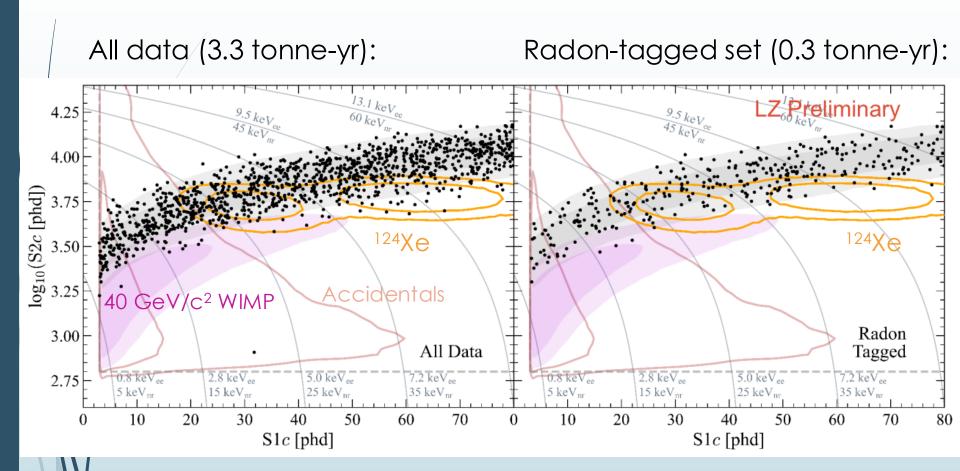
- NR backgrounds
 - Detector material neutrons
 - Solar + Atmospheric neutrinos
- Accidental coincidences background


WS2024 Data Selection

Analysis cuts	Targeted effect
Livetime exclusions	High rate, detector instability, hold-off following large \$2s (e-/photon trains)
S1- and S2- based data quality cuts	Pulse pathologies typical of accidental coincidence
Fiducial volume	Wall background
Skin/OD veto	Neutrons and gammas

Skin/OD Coincidence Window:

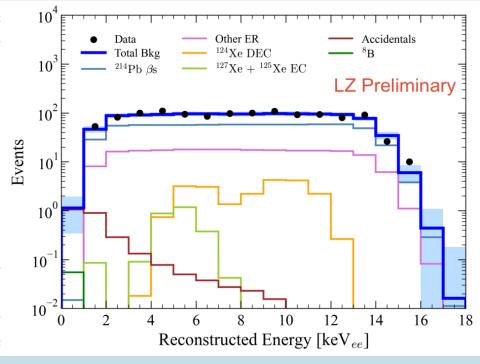



All cuts developed on non-WIMP ROI data

WS2024 WIMP Search Data (salted)

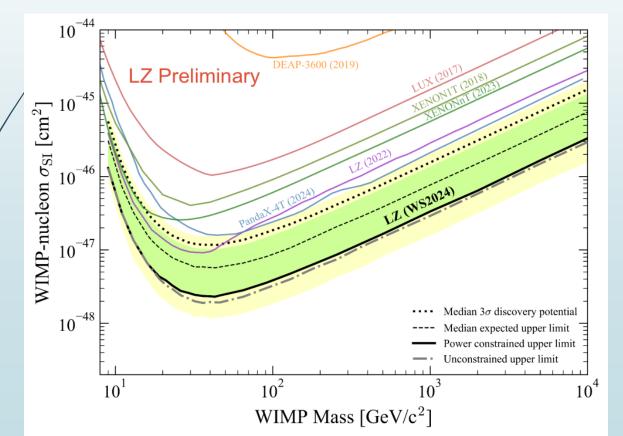
- 220 live days x 5.5 t = 3.3 tonne-yr
- 7 events pass all analysis cuts out of 8 total injected (consistent with evaluated efficiency)
- 1220 events after unsalting

WS2024 Final WIMP Search Data (salt removed)

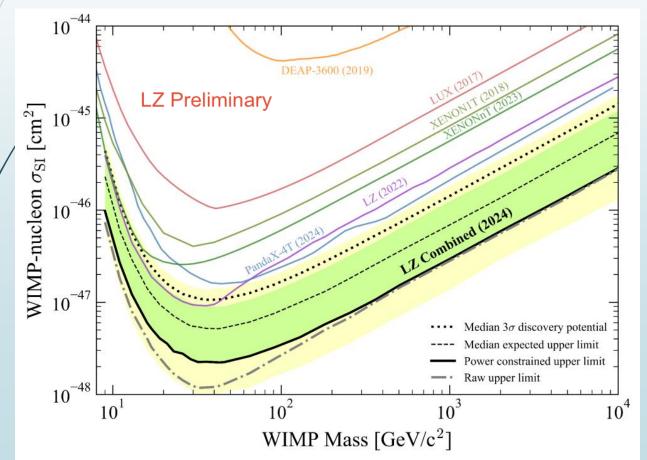


Radon tagged (²¹⁴Pb rich) sample does not contain leakage from ¹²⁴Xe!

WS2024-only Fit Results


- Profile likelihood analysis performed in \$1 vs. log\$2 space
- Best background-only fit projected onto 1D reconstructed energy yields p-value of 0.28

Source	Pre-fit Constraint	Fit Result
$^{214}{ m Pb}~eta{ m s}$	743 ± 88	733 ± 34
85 Kr + 39 Ar β s + det. γ s	162 ± 22	161 ± 21
Solar ν ER	102 ± 6	102 ± 6
$^{212}{ m Pb} + ^{218}{ m Po} \; eta{ m s}$	62.7 ± 7.5	63.7 ± 7.4
Tritium $+$ $^{14}\mathrm{C}$ $\beta\mathrm{s}$	58.3 ± 3.3	59.7 ± 3.3
$^{136} ext{Xe}~2 uetaeta$	55.6 ± 8.3	55.8 ± 8.2
124 Xe DEC	19.4 ± 3.9	21.4 ± 3.6
127 Xe + 125 Xe EC	3.2 ± 0.6	2.7 ± 0.6
Accidental coincidences	2.8 ± 0.6	2.6 ± 0.6
Atm. ν NR	0.12 ± 0.02	0.12 ± 0.02
$^8\mathrm{B}+hep~\nu~\mathrm{NR}$	0.06 ± 0.01	0.06 ± 0.01
Detector neutrons	_	$0.0^{+0.2}$
$40~{ m GeV}/c^2~{ m WIMP}$	_	$0.0^{+0.6}$
Total	1210 ± 91	1203 ± 42


WS2024-only Limit on Spin-independent WIMP-nucleon Cross Section

- No evidence of WIMPs at any mass
- WS2024 min cross section: σ_{SI} = 2.3 x 10⁻⁴⁸ cm² @ 43 GeV/c²
- Upper limit (solid black) is power constrained @ -1σ sensitivity band
 - Under-fluctuation from accidental events

WS2022+WS2024 Combined Limit Results

- No evidence of WIMPs at any mass
- Combined min cross section: σ_{SI} = 2.2 x 10⁻⁴⁸ cm² @ 43 GeV/c²
- lacksquare Upper limit (solid black) is power constrained @ -1 σ sensitivity band
 - Additional under-fluctuation from WS2022

Summary and Outlook

- LZ has set new record on the WIMP-nucleon cross section limit with a total exposure of 4.2 tonne-year
 - More than x4 improvement compared to WS2022
 - First use of flow map-based ²¹⁴Pb tagging technique leads to 60% reduction of primary ER background
 - First observation of charge-suppressed 124Xe double electron capture
- LZ will continue taking data until 2028 (1000 live days) with 'salt' events injected for bias mitigation
- Future physics searches: ⁸B CEνNS, low-mass WIMPs, neutrinoless double beta decay, supernova neutrinos, etc.

Thank you!

https://lz.lbl.gov

250 scientists, engineers, & technical staff 38 institutions

Black Hills State University Brookhaven National Laboratory Brown University

Center for Underground Physics Edinburah University Fermi National Accelerator Lab.

Imperial College London

King's College London

Lawrence Berkeley National Lab. Lawrence Livermore National Lab.

LIP Coimbra

Northwestern University Pennsylvania State University

Royal Holloway University of London

SLAC National Accelerator Lab.

South Dakota School of Mines & Tech

South Dakota Science & Technology Authorit STFC Rutherford Appleton Lab.

Texas A&M University

University of Albany, SUNY

University of Alabama

University of Bristol

University College London

University of California Berkeley

University of California Davis

University of California Los Angeles

University of California Santa Barbara

University of Liverpool

University of Maryland

University of Massachusetts, Amherst

University of Michigan University of Oxford

University of Rochester

University of Sheffield

University of Sydney

University of Texas at Austin

University of Wisconsin, Madison

University of Zürich

US

Europe

Asia

Oceania

