

GrAHal-CAPP for Axion Dark Matter Search with Unprecedented Sensitivity in the 1-3 μeV Mass Range

P. Pugnat, LNCMI-Grenoble/CNRS, EMFL

Tuesday 17 September 2024

European Magnetic Field Laboratory

Grenoble Axion Haloscopes LNCMI

Outline

- Introduction
 - Weakly Interacting Slim Particles (WISPs)* as a possible component(s) of the Cold Dark Matter (CDM)
 - & QCD DM Axion
 - The need of high field / high flux magnets

* Complementary to the "better-known" WIMPs, i.e. Weakly Interactive Massive Particles

- The 43 T Grenoble Hybrid Magnet at LNCMI (CNRS, Univ. Grenoble-Alpes)
 - Overview
 - Development of the superconducting conductor & in-house assembly
 - On-going commissioning phase
- The Grenoble Axion Haloscope (GrAHal)
 - BabyGrAHal
 - Probing QCD Axion Dark Matter with the Grenoble Hybrid Magnet up to 43 T
 - QCD DM axion search at high frequency & high field, i.e. around 12.78 GHz (52.5 $\mu eV)$ & 43 T
 - Focus on QCD DM axion search in the low frequency range (200-600 MHz *i.e.* 1-3 μ eV)

Particle Physics Beyond the Standard Model – Oversimplified Picture

Pierre.Pugnat@Incmi.cnrs.fr

Why High Magnetic Fields & Flux for QCD-DM Axion/ALPs searches?

To maximize the conversion of this hypothetical weakly interacting particle to photons, via the inverse Primakoff effect

The key ingredient of most of the experiments $P_{LSW} \sim g_{a\gamma\gamma}^{4} B^{4} L^{4}$ $P_{Haloscope} \sim g_{a\gamma\gamma}^{2} B^{2} V$

This "non-trivial" interaction is related to the chiral anomaly, i.e. a purely quantum phenomenon first studied in particle physics in 1969 (Adler, Bell and Jackiw) to explain the neutral pion decay in 2 photons ($\pi^0 \rightarrow \gamma\gamma$) anticipated and observed by Primakoff in 1951.

The puzzle was the anomalous nonconservation of a chiral current, which is today "rejuvenated" in condensed matter physics...

Hybrid Magnets Worldwide Producing the highest DC-field

Specially developed RCOCC conductor 13 x 18 mm²

Key point Modularity High field/high flux

T	
	hd
J	
	antinalantantantantantantantantantantantantanta

Cooling by forced flow supercritical He ~11g/s @ 5 bars

FIELD LABORATORY

Grenoble, France	Nijmegen, Netherlands	Hefei, China	Tallahassee, FL
8.5 (9) + 34.5 (36+) = 43 (45+) T	12 + 33 = 45 T	11 + 34 = 45 T	11.5 + 33.5 = 45 T
34 mm, 24 (30) MW	32 mm, 24 MW	32 mm, 32 MW	32 mm, 32 MW
RCOCC Nb-Ti, 1.8 K	CICC Nb3-Sn, 4.2 K	CICC Nb3-Sn, 4.2 K	CICC Nb3-Sn, 4.2 K
7.1 kA, 1100/1826 mm dia.	20 kA, 720/1286 mm dia.	13.4 kA, 680/1650 mm dia.	10 kA
2025	In construction	45.22 T Aug. 12, 2022	45.17 T June 26, 2000

Technological Choices

The cryogenic system principle: Pressurized superfluid He bath at 1200 hPa, 1.8 K

Industrial Production Line Developed, Built, Installed & Operated at LNCMI

Innovative developments have been achieved based on induction heating to strictly control R_a & AC losses

P. Pugnat, R. Pfister *et al., IEEE Trans. Appl. Supercond.* **26**, 4302405 (2016)

Crimping, soft-soldering, calibration & winding in single pancakes 4 m hight for delivery to the magnet manufacturer https://www.youtube.com/watch?v=cp5NIR2cN5s

Pierre.Pugnat@Incmi.cnrs.fr

Integration of the Grenoble Hybrid Magnet with its Cryogenic Plant

Magnet Seismicity* during Powering up to the Nominal Field of 8.5 T <u>IEEE TASC 34, 1 (2023)</u>

*Pioneering work in 2001: DOI 10.1109/77.920111

No training quenches but Kaiser effect observed

Most of the spikes are located at the interface between flanges and first & last DP

Sc magnet fully operational at 8.5 T GrAllal

Grenoble Axion Haloscopes

Grenoble Alpes

agence nationale de la recherche

an

Théorie

R. Ballou P. Camus T. Grenet

P. Perrier

- A. Talarmin
- J. Vessaire

P. Pugnat R. Pfister S. Krämer J. Quevillon C. Smith K. Martineau A. Barrau

Few Words from P. Sikivie (Haloscopes proposed in 1983, Rev. Mod. Phys. 93, 015004)

Visit of Olympie during 2nd Patras Workshop in 2006 at Patras

Axion electrodynamics

 $\nabla \cdot \mathbf{E} = g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a$ $\nabla \times \mathbf{B} - \partial_t \mathbf{E} = g_{a\gamma\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \partial_t a \right)$ $\nabla \times \mathbf{E} + \partial_t \mathbf{B} = 0$ $\nabla \cdot \mathbf{B} = 0$

"Most importantly, the cavity experiment uses a variety of technologies microwave engineering, ultra-low noise receivers in a high magnetic field environment, cryogenics - which are not typically used by high energy physicists and which had to be specially developed.

... Feynman's advice to young scientists aspiring to great discoveries. He said: "You have to develop your own tools". "

https://ep-news.web.cern.ch/content/qa-pierre-sikivie

Grenoble Axion Haloscopes

Key expertise at CNRS-Grenoble for High magnetic fields, Extreme Low Temperatures & Quantum Detectors

European Magnetic Field Laboratory LN

Dresden/LNCMI-Toulouse, pulsed up to 95/91 T, 1-10 ms Nijmegen/**LNCMI-Grenoble**, DC up to 38/36 T, Projects 45/43+ T

https://emfl-users.lncmi.cnrs.fr/SelCom/proposals.shtml

Grenoble Alpes ÉEL **European Microkelvin Platform** JPA Achievements 20 leading ultralow temperature physics & technology Institutes in Europe including 7 submilliK facilities https://www.cnrs.fr/cnrsinnovationlalettre/actus.php?numero=743 $1 \text{ GHz} < f_o < 10 \text{ GHz}$ http://emplatform.eu/about/facilities $G \ge 20 \text{ dB}$ $BW \sim 2 \text{ GHz}$ 10 µK nuclear stage $T_N \gtrsim \frac{hf_o}{2k_{\rm B}}$ temperature 6 μK nuclear stage $P_{\rm 1dB} \sim -100 \ {\rm dBm}$ 600 nm temperature Quantum limited Josephson parametric amplifiers Nicolas Roch QuantECA Team nstitut Néel, Grenoble, 100 µK nuclear France demagnetization stage **Expertise for dilution fridges & cryostats**

(Planck, Edelweiss, CUT, SuperCDMS ...)

Baby-GrAHal 1: 1st Experimental Runs Ended

The RF-cavity resonant frequency was tuned & scanned by varying the GHe pressure around the cavity :

- For the range 1-1200 mbar, excursion Δf = 20 MHz, i.e. ~ 0.1 μ eV
- Sensitivity in the range of 20-25 x KSVZ @ 4.4 K
- Detailed data analysis close to completion (to be published)

T. Grenet et al. https://arxiv.org/abs/2110.14406

Pierre.Pugnat@Incmi.cnrs.fr

Grenoble Axion Haloscopes

► The key element : The modular Grenoble Hybrid Magnet combining sc and resistive technologies (ongoing commissioning up to 43 T)

Field	Warm dia.	Power	RF-cavity dia.	f _{тмо10}	Axion mass	B ² V (T ² m ³)
43 T	34 mm	25.4 MW	20 mm	11.5 GHz	47.2 μeV	0.5
40 T	50 mm	25.4 MW	34 mm	6.76 GHz	27.8 μeV	0.6
27 T	170 mm	19 MW	86 mm	2.67 GHz	11 µeV	3.5
17.5 T	375 mm	12.9 MW	291 mm	0.79 GHz	3.2 μeV	6.6
9 T	800 mm	0.4 MW	675 mm	0.34 GHz	1.4 μeV	40

Operation end of 2024-25 with HTS RF cavity in collaboration with CAPP/IBS-KAIST (see O. Kwon presentation)

GrAHal-CAPP ► Focus on 1-3 µeV axion mass (200-600 MHz)

Grenoble Axion Haloscopes

Center for Axion and Precision Physics Research

GrAHal-CAPP : Phase 1 @ 4K

- 50 K cryo-stage operational
 @ t₀+18 months
- 4 K cryo-stage operational
 @ t₀+24 months

 $\rightarrow 1^{st} run$

<u>GrAHal-CAPP : Phase 2 @ 50 mK</u> - Operational @ t_0 + 42 months

 $\rightarrow 2^{nd}$ run reaching DFSZ, in 2-year integration time

► Focus first on 1-3 μeV axion mass (200-600 MHz)

https://doi.org/10.3389/fphy.2024.1358810

More Information / Outline

Few references

- "High magnetic fields for fundamental physics": <u>https://arxiv.org/pdf/1803.07547.pdf</u>
- OSQAR: <u>https://ep-news.web.cern.ch/content/osqar-experiment-sheds-light-hidden-sector-cerns-</u> <u>scientific-heritage</u>, <u>https://arxiv.org/abs/1506.08082</u>
- GrAHal: <u>https://bib-pubdb1.desy.de/record/395493</u>; <u>https://arxiv.org/abs/2110.14406</u>; <u>https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2024.1358810/full</u>
- VMB@CERN: https://cds.cern.ch/record/2649744

CERN PBC Study Group defining the European strategy of Particle Physics

- https://pbc.web.cern.ch/
- <u>https://indico.stfc.ac.uk/event/268/attachments/522/909/Vallee_PBC_RAL.pdf</u>
- <u>https://www.nature.com/articles/s41567-020-0838-4</u>
- https://indico.cern.ch/event/1369776/contributions/5795144/attachments/2827635/

New EU COST Action : COSMIC WISPers in the Dark Universe: Theory, astrophysics and experiments

- <u>https://www.cost.eu/actions/CA21106/</u> (Chairman/Co-Chair, MoU, Objectives)
- You can apply to working groups of the network from <u>https://www.cost.eu/actions/CA21106/#tabs+Name:Working%20Groups%20and%20Membership</u>
- Kick-off Meeting at Rome 23-24 February 2023 https://agenda.infn.it/e/CosmicWispersKickOff

High Field Magnet Proposal submission open twice a year: <u>https://emfl.eu/apply-for-magnet-time/</u>

Grenoble Axion Haloscopes

