Fundamental Physics Search with SRF Cavities

Yifan Chen, Niels Bohr Institute yifan.chen@nbi.ku.dk SHANHE Collaboration

16 September 2024, Patras 19th Patras Workshop on Axions, WIMPs and WISPs

KØBENHAVNS UNIVERSITET

VILLUM FONDEN

Electromagnetic Detection of Ultralight Bosons and HFGW

 \vec{J}_{eff} in a cavity or shield room: $\Box \vec{A} = \vec{J}_{\text{eff}}$.

Dark photon A': $\vec{J}_{eff} = \epsilon m_{A'}^2 \vec{A'};$

No background field. Background \vec{B}_0 .

Axion a: $\vec{J}_{eff} = g_{a\gamma} \vec{B}_0 \partial_t a;$

GW h $\vec{J}_{eff} \sim \partial(h F_0);$ Background \vec{E}_0 or \vec{B}_0 .

- Resonant cavity: $\omega_{\rm rf} \sim \omega_{J_{\rm eff}}$.
- **Circuit/magnetometer**: $B \sim |\vec{J}_{eff} V^{1/3}|$ from \vec{J}_{eff} where $1/\omega_{J_{eff}} \gg V^{1/3}$.

e.g. ADMX, HAYSTAC, CAPP, ORGAN, DM radio...

[Jiang et al, Nature Commun, 2305.00890]

Superconducting Radio-Frequency (SRF) Cavity

- **SRF cavities** are widely used for accelerators.
- Significant $Q_0 > 10^{10}$ compared to copper cavity with $Q_0 \le 10^6$.
- ► High Q_0 boosts dark photon searches [SERAPH 22', SHANHE 23']: $\epsilon \approx 10^{-16} \left(\frac{10^{10}}{Q_0}\right)^{\frac{1}{4}} \left(\frac{4 \text{ L}}{V}\right)^{\frac{1}{2}} \left(\frac{100 \text{ s}}{t_{\text{int}}}\right)^{\frac{1}{4}} \left(\frac{\text{GHz}}{f_0}\right)^{\frac{1}{4}} \left(\frac{T_{\text{amp}}}{3 \text{ K}}\right)^{\frac{1}{2}}.$
- Heterodyne upconversion [Berlin et al 19']: $\omega_{\rm rf} \omega_0 \approx \omega_a$ or ω_h .
- Both EM and mechanical coupling from GW [Berlin et al 21' 23'].

▶ Niobium superconductor requires $B_0^{\text{max}} < 0.2$ T, still $g_{a\gamma}$ or $h \sim 1/Q_0^{1/4}$.

International SRF Campaigns

Fermilab SQMS

•SERAPH:

Dark photon dark matter searches.

•Dark SRF:

Light-shining-wall search for dark photon.

DESY/SQMS:

•MAGO 2.0

HFGW searches with mechanical couplings.

DPDM Scan Search [SHANHE Collaboration]

► TM₀₁₀ of 1-cell elliptical cavity: largest overlapping with DPDM.

- Cavity and amplifier positioned in 2 K liquid helium.
- Mechanical turner scans resonant frequency f₀.
- Each scan is followed by calibration of f₀ and its stability range Δf₀.
- Drift $\delta f_d \leq 1.5 \text{ Hz and}$ microphonics $\sigma_{f_0} \approx 4 \text{ Hz}$ $\rightarrow \Delta f_0 \approx 10 \text{ Hz}.$

Tuner arm

Motor Piezo

Data Analysis and Constraints

- ► Total 1150 scan steps with each 100 s integration time.
- Group every 50 adjacent bins and perform a constant fit to address small helium pressure fluctuation.
- Normal power excess shows Gaussian distribution:

[SHANHE, PRL 2305.09711]

► Scan search with SRF and most stringent constraints in most exclusion space near $f_0 \approx 1.3$ GHz.

Cavity as Radio Telescope for Dark Photon

Galactic boosted dark photon from dark matter decay:

- Perturbative cascade decay from standard halo. [ADMX Dror et al 23']
- Parametric resonant production from scalar clump?

Polarization-dependent production:

- Longitudinal mode from a dark higgs.
- Transverse mode from axion-photon-type coupling.

Cavity as radio telescope for dark photon.

 Diurnal modulation to distinguish direction and polarization.

Cavity as Radio Telescope for Dark Photon

Galactic boosted dark photon from dark matter decay:

- Perturbative cascade decay from standard halo.
 [ADMX Dror et al 23']
- Parametric resonant production from scalar clump?

Polarization-dependent production:

- Longitudinal mode from a dark higgs.
- Transverse mode from axion-photon-type coupling.

Diurnal modulation constraints:

• L-mode enhanced from $|\vec{A'}| \sim \omega_{A'}/m_{A'} \gg 1$.

Response Width for Multi-mode Resonators

Broadened response in multi-mode resonators [YC et al, PRR 2103.12085, 2309.12387]:

Realization via Josephson junctions [Wurtz et al 21', Jiang et al 23', CEASEFIRE].

► New sensitivity limit for multi-mode resonators, optimal for SRF cavity: $\frac{\Delta \omega_r^{\text{MM}}}{\Delta \omega_r^{\text{SM}}} \propto \left(\frac{g}{\gamma n_{\text{occ}}}\right)^{\frac{2N}{2N+1}} \rightarrow \frac{Q_0}{n_{\text{occ}}} \text{ as } N \gg 1, \ g \rightarrow \omega_{\text{rf}}, \ \Delta \omega_r^{\text{MM}} \rightarrow \omega_{\text{rf}}.$

Simultaneous Resonant and Broadband Detection

- *e*-fold time: 10^7 s.
- DC cavity and LC circuits: SNR²_{MM}/SNR²_{SM} ~ Q₀/n_{occ}
 High n_{occ} of LC circuits at low frequency made enhancement ineffective.

Simultaneous scan $N_e = 6$ orders of ω_{Ψ} with significant response:

 $rac{\mathrm{SNR}^2_{\mathrm{MM}}}{\mathrm{SNR}^2_{\mathrm{SM}}}\simeq N_e rac{\overline{\omega}_\Psi \, Q_0}{\omega_{\mathrm{rf}} \, n_{\mathrm{occ}}}$

Summary

 Resonant cavities or circuits are powerful detectors for ultralight bosons and HFGW.

► SRF cavity with significant Q_0 has significant sensitivity: $\epsilon/g_{a\gamma}/h \propto 1/Q_0^{1/4}$.

 SRF cavity as radio antenna for dark photon: dissection of polarization and angular distribution.

Multi-mode resonantors have broadened response.

 \rightarrow Simultaneous resonant and broadband detection for SRF upconversion.

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Appendix

<□ > < @ > < E > < E > E のQ @

$$-\frac{1}{2}\nabla^{\mu}\mathbf{a}\nabla_{\mu}\mathbf{a}-\frac{1}{2}\nabla^{\mu}\phi\nabla_{\mu}\phi-\frac{1}{4}\mathbf{\textit{F}}^{\prime\mu\nu}\mathbf{\textit{F}}_{\mu\nu}^{\prime}-\mathbf{\textit{V}}(\Psi),\quad\Psi=\mathbf{a},\phi\text{ and }\mathbf{\textit{A}}_{\mu}^{\prime}.$$

- Axion: hypothetical pseudoscalar motivated by strong CP problem.
- Prediction from fundamental theories with extra dimensions:

e.g. $g_{MN}(5D) \rightarrow g_{\mu\nu}(4D) + A'_{\mu}(4D), \quad A'_{M}(5D) \rightarrow A'_{\mu}(4D) + a(4D).$ String axiverse/photiverse: logarithmic mass window, $m_{\Psi} \propto e^{-\mathcal{V}_{6D}}$.

• Coherent wave dark matter candidates when $m_{\Psi} < 1$ eV:

$$\Psi(\mathrm{x}^\mu)\simeq \Psi_0(\mathbf{x})\cos\omega t; \qquad \Psi_0\simeq rac{\sqrt{
ho}}{m_{W}}; \qquad \omega\simeq m_\Psi.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axion Photon Coupling and Cavity Haloscope

• Axion photon coupling: $\propto g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$,

mixture with π_0 and anomaly generation.

$$\rightarrow \nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J} - g_{a\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \partial_t a \right).$$

► Background static B_0 → resonant when $\omega_{\rm rf} = m_a \sim V^{-1/3} \sim \mathcal{O}(1)$ GHz.

e.g. ADMX, HAYSTAC, CAPP, ORGAN ···

Resonant LC circuit

- Resonant conversion happens when $m_a \simeq \omega_{\rm rf} = \frac{1}{\sqrt{LC}}$ [Sikivie et al 13'].
- Scanning the mass from 100 Hz to 100 MHz by tuning the capacitor C.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

e.g. DM radio, ADMX-SLIC

Heterodyne Upconversion with SRF Cavity

$$\left(\partial_t^2 + \gamma \partial_t + \omega_{\rm rf}^2\right) \mathbf{E}_{\rm rf} = g_{a\gamma} \partial_t \left(\mathbf{B}_{\mathbf{0}} \partial_t a\right).$$

Heterodyne upconversion [Berlin et al 19']:

injecting AC pump mode

 $\partial_t(\mathbf{B_0}) = i\omega_0\mathbf{B_0}, \quad \omega_{\mathrm{rf}} \simeq \omega_0 + m_a.$

E

- Large overlapping between B_0 and $E_{\rm rf}$ is required.
- Tune ω_{rf} ω₀ from Hz to GHz:
- Sensitivity benefits from superconducting nature: Q₀ > 10¹⁰.

• A new U(1) vector couples in different portals with SM particles:

 $\epsilon F'_{\mu\nu}F^{\mu\nu} + A'_{\mu}\bar{\psi}\gamma^{\mu}(g_{V} + g_{A}\gamma_{5})\psi + F'_{\mu\nu}\bar{\psi}\sigma^{\mu\nu}(g_{M} + g_{E}\gamma_{5})\psi.$

- Cavity/circuits for kinetic mixing, optomechanics for hidden U(1), spin sensors for dipole couplings...
- Similar to axion: extra dimensions, misalignment production (or during inflation), coherent wave.
- Novel aspects: three polarization degrees of freedom:

Longitudinal mode: $\vec{\epsilon}_0(\vec{k}) \propto \vec{k}$.

Transverse modes: $\vec{\epsilon}_{R/L} \perp \vec{k}$.

Signals projected to the sensitive direction of a vector sensor: $\sim \vec{\epsilon} \cdot \hat{l}$.

Kinetic Mixing and Hidden U(1) Dark Photon

• Effective currents from $\epsilon F'_{\mu\nu}F^{\mu\nu}$: $A'_{\mu} \rightarrow \vec{J}_{eff}$. **Kinetic mixing U(1)** dark photon shows up in circuit/cavity. [Chaudhuri et al 15'] or geomagnetic fields [Fedderke et al 21'];

► Force from $g_V A'_{\mu} \bar{\psi} \gamma^{\mu} \psi$: $A'_{\mu} \rightarrow \vec{F}$. U(1) B-L & B shows up in optomechanics [Graham et al 15', Pierce et al 18'] Or astrometry [Graham et al 15', PTA, GAIA].

Large Shield Room for Dark Photon Dark Matter

Dark photon dark matter induces

$$\boldsymbol{B} \approx |\vec{\mathbf{J}}_{\rm eff}| \ \boldsymbol{V}^{1/3} \approx 10^{-12} \, \varepsilon \left(\frac{m_{A'}}{10 \, {\rm Hz}}\right) \left(\frac{\boldsymbol{V}^{1/3}}{1 \, {\rm m}}\right) \, {\rm T},$$

Two spatially separated large shield room (8m³) with magnetometers placed on the wall: [Jiang et al 23']

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Long-baseline correlation suppresses common-mode noise.

High-Frequency Gravitational Waves

 Gravitational waves (GW) above 10 kHz have no known astrophysical origins.

Inverse Gertsenshtein effect:

$$\frac{1}{2}h^{\mu\nu}T^{\rm EM}_{\mu\nu} \rightarrow J^{\mu}_{\rm eff} = \partial_{\nu}\left(\frac{1}{2}hF^{\mu\nu} + h^{\nu}{}_{\rho}F^{\rho\mu} - h^{\mu}{}_{\rho}F^{\rho\nu}\right).$$

э.

Mechanical resonance: cavity deformation and mode transition, [MAGO 2.0].

Galactic Boosted Dark Photon

Galactic boosted dark photon from dark matter decay:

- Perturbative cascade decay from standard halo.
 [ADMX Dror et al 23']
- Parametric resonant production from scalar clump?

Polarization-dependent production:

- Longitudinal mode from a dark higgs.
- Transverse mode from axion-photon-type coupling.

Diurnal Modulation from Earth Rotation

 X^{μ} Angular-dependent sensitivity to relativistic dark photon characterized by overlapping factor $C(\theta)$. [ADMX Dror et al 23' for galactic axion] TM₀₁₀ Detector is rest at Earth frame while Earth is rotating in galactic frame. 0.3F — L–mode - T-mode 0.2 $C_P(\theta)$ Diurnal modulation of the signals 0.1 in cavity. 0 $\pi/4$ $\pi/2$ Longitudinal and transverse modes θ

show opposite variation.

SRF Constraints for Galactic Dark Photon

Same dataset as dark photon dark matter searches:

- Total scan range of ~ 1 MHz: within bandwidth of galactic dark photon.
- Total experimental time of ~ 60 hours: daily modulation tests.
- Cosmology requires $\rho_{A'} \leq 1000 \, \rho_{\gamma}$ on Earth.
- Constraints for longitudinal modes are more stringent due to its spatial wavefunction is $\sim \omega_{A'}/m_{A'}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simultaneous Resonant and Broadband Detection for Dark Sectors

based on

arxiv: 2103.12085, Phys. Rev. Res. **4** (2022) no.2, 023015 arxiv: 2309.12387

in collaboration with Jiang, Li, Liu, Ma, Shu, Yang, Zeng

Quantum noise limit for resonant detection

Standard quantum limit for power law detection: [Chaudhuri et al 18']

Noise PSD: resonant intrinsic noise S_{int} + flat readout noise S_r .

Sensitivity to S_{sig} and S_{int} is the same. $SNR^2 \propto \Delta \omega_r \ (S_{int} \gg S_r).$

Beyond standard quantum limit:

Squeezing *S*_r, e.g., HAYSTAC.

Increasing the sensitivity to S_{sig} , e.g., white light cavity in optomechanics/GW detection [Miao et al 15'].

 $S_{
m int} \propto$ Cauchy distribution

White Light Cavity for Axion [Li et al 20']

- **Beam-splitting**: $\hbar g(\hat{a}\hat{b}^{\dagger} + \hat{a}^{\dagger}\hat{b})$.
- Non-degenerate parametric interaction: $\hbar G(\hat{b}\hat{c} + \hat{b}^{\dagger}\hat{c}^{\dagger})$.
- ► \mathcal{PT} -symmetry $(\hat{a} \leftrightarrow \hat{c}^{\dagger})$ emerges when g = G. $(\dot{a} + \dot{c}^{\dagger}) = -i(g - G)\hat{b} - i\alpha\Psi + \cdots;$ $\dot{\hat{b}} = -\gamma_r\hat{b} - ig(\hat{a} + \hat{c}^{\dagger}) + \cdots.$
- Coherent cancellation leads to **double resonance**. S_{sig} is largely enhanced when $g \gg$ intrinsic dissipation γ :

$$S_{\rm sig}^{\rm WLC}(\Omega) = \frac{2\gamma_r \alpha^2 S_{\Psi}(\Omega)}{(\gamma + \gamma_r)^2 + \Omega^2} \left(\frac{g^2}{\gamma^2 + \Omega^2}\right).$$
 Readout coupling γ_r

 $\hbar \alpha (\hat{a} + \hat{a}^{\dagger}) \Psi$

Response Width for Multi-mode Resonators

Signal response width can be significantly broadened in a multi-mode system compared to single-mode ones:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

New sensitivity limit for multi-mode resonators.

Simultaneous Resonant and Broadband Detection

- *e*-fold time: 10^7 s.
- DC cavity and LC circuits: SNR²_{MM} SNR²_{SM} ~ <u>n_{occ}</u> of LC circuits at low frequency made enhancement ineffective.

Simultaneous scan $N_e = 6$ orders of ω_{Ψ} with significant response.

High Q_0 and constant n_{occ} enable reaching QCD axion with $m_a > kHz$.

Property of Ultralight Dark Matter

Galaxy formation: virialization $\rightarrow \sim 10^{-3}c$ velocity fluctuation, thus kinetic energy $\sim 10^{-6}m_{\Psi}c^2$. Effectively coherent waves:

$$\Psi(ec{x},t) = rac{\sqrt{2
ho_{\Psi}}}{m_{\Psi}} \cos\left(\omega_{\Psi}t - ec{k}_{\Psi}\cdotec{x} + \delta_0
ight).$$

• Bandwidth:
$$\delta \omega_\Psi \simeq m_\Psi \left< v_{\rm DM}^2 \right> \simeq 10^{-6} m_\Psi$$
, $Q_\Psi \simeq 10^6$.

- Correlation time: τ_Ψ ≃ ms 10⁻⁶eV/m_Ψ.
 Power law detection is used to make integration time longer than τ_Ψ.
- ► Correlation length: $\lambda_d \simeq 200 \text{ m} \frac{10^{-6} \text{eV}}{m_{\Psi}} \gg \lambda_c = 1/m_{\Psi}$. Sensor array can be used within λ_d .

Quantization of Cavity Modes

• Quantized EM modes with wavefunctions $\vec{\epsilon}_n(\vec{r})$ In Coulomb gauge:

$$\vec{A} = \sum_{n} \frac{1}{\sqrt{2\omega_{\mathrm{rf}}^{n}}} \hat{a}_{n}^{\dagger} \vec{e}_{n}(\vec{r}) e^{-\mathrm{i}\omega_{\mathrm{rf}}^{n}t} + h.c..$$

The Hamiltonian for each mode reduces to harmonic oscillator:

$$H_0 = \frac{1}{2} \int_V \left(\vec{E}^2 + \vec{B}^2 \right) \, \mathrm{d}V = \sum_n \omega_{\mathrm{rf}}^n \left(\hat{a}_n^\dagger \hat{a}_n + \frac{1}{2} \right),$$

Interaction with effective currents:

$$H_{\rm int} = \int_{V} \vec{A} \cdot \vec{J}_{\rm eff} \, \mathrm{d}V = \alpha \Psi \left(\hat{a} \, e^{\mathrm{i}\omega_{\rm rf} t} + \hat{a}^{\dagger} \, e^{-\mathrm{i}\omega_{\rm rf} t} \right) / \sqrt{2},$$

where α contains geometric overlapping factor $\eta_n \propto \int_V \vec{\epsilon}_n \cdot \vec{J}_{eff} dV$.

Quantization of Circuit Modes

Energy stored in an inductor and a capacitor:

$$\mathcal{H}_0 = \frac{\Phi^2}{2L} + \frac{Q^2}{2C} = \omega_{\rm rf} \left(\hat{a}^\dagger \hat{a} + \frac{1}{2} \right).$$

• Interaction with external Φ_{Ψ} :

$$H_{\rm int} = rac{\Phi \, \Phi_{\Psi}}{L} = lpha \Psi \left(\hat{a} \, e^{\mathrm{i} \omega_{
m rf} t} + \hat{a}^{\dagger} \, e^{-\mathrm{i} \omega_{
m rf} t}
ight) / \sqrt{2}.$$

 Circuit representation of cavity modes with an antenna: Cavity
 LC circuit

$$\Phi = \int_{Ant} \vec{A}(\vec{r}, t) \cdot d\vec{l}.$$

A system interacting with environment:

System mode \hat{a} couples to infinite degrees of freedom \hat{w}_{ω} :

$$i\hbar\sqrt{2\gamma_r}\int_{-\infty}^{+\infty}rac{d\omega}{2\pi}[\hat{a}^{\dagger}\hat{w}_{\omega}-\hat{a}\hat{w}_{\omega}^{\dagger}]+\int_{-\infty}^{+\infty}rac{d\omega}{2\pi}\hbar\omega\hat{w}_{\omega}^{\dagger}\hat{w}_{\omega}.$$

Fourier transformation: 0-dim localized mode â couples to an 1-dim bulk w_ξ (transmission line):

$$i\hbar\sqrt{2\gamma_r}\hat{a}^{\dagger}\hat{w}_{\xi=0}+\mathrm{h.c.}+i\hbar\int_{-\infty}^{+\infty}d\xi\hat{w}^{\dagger}_{\xi}\partial_{\xi}\hat{w}_{\xi}.$$

• Equations of motion for \hat{a} and outgoing mode \hat{w}_{0_+} :

$$\dot{\hat{a}}=-\gamma_r\hat{a}+\sqrt{2\gamma_r}\hat{w}_{0_-};\qquad \hat{w}_{0_+}=\hat{w}_{0_-}-\sqrt{2\gamma_r}\hat{a}$$

Single-mode Resonator as Quantum Sensor

- For a resonator \hat{a} probing weak signal Ψ : $\alpha \left(\hat{a} + \hat{a}^{\dagger} \right) \Psi$
- Readout for outgoing mode $\hat{v}_r \equiv \hat{w}_{0_+}$:

$$\hat{v}_r = rac{\Omega - i\gamma_r}{\Omega + i\gamma_r}\hat{u}_r + rac{\sqrt{2\gamma_r}lpha}{\Omega + i\gamma_r}\Psi.$$

- Fluctuations in incoming mode û_r ≡ ŵ₀ with quantum limited power spectral density S_r = 1.
- Resonant signal spectrum $S_{sig} = \frac{\gamma_r \alpha^2}{\gamma_r^2 + \Omega^2} S_{\Psi}(\Omega)$.
- Trade-off between peak sensitivity and bandwidth by tuning γ_r.

Intrinsic loss and fluctuation

Intrinsic loss ∝ γ exists, characterized by quality factor Q_{int} ≡ ω/γ.

Fluctuation-dissipation theorem predicts intrinsic loss fluctuations

$$S_{
m int}(\Omega) = rac{4\gamma\gamma_r}{(\gamma+\gamma_r)^2+\Omega^2}n_{
m occ}.$$

Using scattering matrix elements:

$$S_{\rm sig} = |S_{0r}|^2 \frac{\alpha^2}{4\gamma} S_{\Psi}, \qquad S_{\rm noise} = |S_{0r}|^2 n_{\rm occ} + |S_{rr}|^2 \frac{1}{2} + \frac{1}{2}$$

 Standard quantum limit for power law detection: resonant S_{int}+ flat S_r. [Chaudhuri et al 18']

Binary Tree Haloscope

► Fully \mathcal{PT} -symmetric setup with $\hat{a}_{ij} \leftrightarrow \hat{c}_{ij}^{\dagger}$ brings strong robustness.

Multi-probing sensors leads to coherent enhancement:

$$S_{\mathrm{sig}}^{\mathrm{BT}}(\Omega) = 2^{2n-2} S_{\mathrm{sig}}^{\mathrm{RC}}(\Omega).$$

Quantum Limit for Multi-mode resonators

Scan bandwidth can be significantly increased in a multi-mode system.

Far beyond the one of single-mode resonators.

New quantum limit for multi-mode resonators.

Beam splitting coupling

Use an additional capacitor to couple two LC circuits:

$$H = \frac{1}{2}C_1\dot{\Phi}_1^2 + \frac{1}{2}C_2\dot{\Phi}_2^2 + \frac{1}{2L_1}\Phi_1^2 + \frac{1}{2L_2}\Phi_2^2 + \frac{1}{2}C_0(\dot{\Phi}_1 - \dot{\Phi}_2)^2.$$

Conjugate momentum to Φ_i involves mixing. Interaction potential:

$$eta\hbar\sqrt{\omega_1\omega_2}(\hat{a}_1-\hat{a}_1^\dagger)(\hat{a}_2-\hat{a}_2^\dagger)\sim \hat{a}_1\hat{a}_2^\dagger+h.c.,$$

Non-Degenerate Parametric amplifier coupling

Use a DC voltage and a Josephson junction to couple two LC circuits:

$$V = -\frac{\hbar I_J}{2e_0} \cos(\omega_0 t + \frac{2e_0}{\hbar} (\Phi_2 + \Phi_3))$$

= $-\frac{\hbar I_J}{2e_0} \cos(\omega_0 t + \kappa_2 (a_2 + a_2^{\dagger}) + \kappa_3 (a_3 + a_3^{\dagger}))$
 $\sim \frac{\hbar I_J}{4e_0} \kappa_2 \kappa_3 [a_2 a_3 + a_2^{\dagger} a_3^{\dagger}],$