
First NA62 search for long-lived new physics particle hadronic decays

19th Patras Workshop on Axions, WIMPs and WISPs 16-20 September 2024

Samet Lezki
On Behalf of the NA62 Collaboration

Axion/ALP Parameter Space

Ciaran O'Hare

Introduction

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- → Complementary to energy frontier (LHC) and indirect searches (precision measurements, LF&NV, etc.);
- → Sensitive to low masses at MeV GeV scale and low couplings accessible (large statistics)
- → Dark Sector (SM-DM) portals typically probed:

NP particle	type	SM portal (dim ≤ 5)	PBC	Decay channels (m ≤ 1GeV)	
$HNL(N_I)$	fermion	$F_{\alpha I}(\overline{L}_{\alpha}H) N_I$	6 - 8	$\pi\ell$, $K\ell$, $\ell_1\ell_2v$	
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	4 - 5	$\ell\ell$ 2π , 4π , $2K$	
axion/ALP (a)	pseudoscalar	$ (C_{VV}/\Lambda) aV_{\mu\nu} \tilde{V}^{\mu\nu} $ $ (C_{ff}/\Lambda) \partial_{\mu} a\overline{f} \gamma^{\mu} \gamma^{5} f $	9, 11 10	γγ, ℓℓ	$2\pi\gamma$, 3π , 4π , $2\pi\eta$, $2K\pi$
dark Photon (A′ _µ)	vector	$-\left(\varepsilon/2\cos\theta_{W}\right)F_{\mu\nu}^{'}B^{\mu\nu}$	1 - 2	<u>ll</u>	2π , 3π , 4π , $2K$, $2K\pi$

Introduction

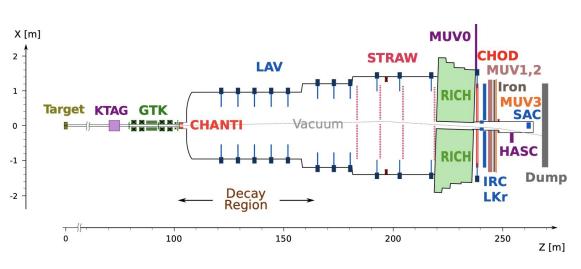
Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- → Complementary to energy frontier (LHC) and indirect searches (precision measurements, LF&NV, etc.);
- → Sensitive to low masses at MeV GeV scale and low couplings accessible (large statistics)
- → Dark Sector (SM-DM) portals typically probed:

NP particle	type	SM portal (dim ≤ 5)	PBC	Decay channels (m ≤ 1GeV)	
$HNL(N_I)$	fermion	$F_{\alpha I}(\overline{L}_{\alpha}H) N_I$	6 - 8	$\pi\ell$, $K\ell$, $\ell_1\ell_2v$	
dark Higgs (S)	scalar	$(\mu S + \lambda S^2) H^{\dagger} H$	4 - 5	$\ell\ell$ $2\pi, 4\pi, 2K$	
axion/ALP (a)	pseudoscalar	$ (C_{VV}/\Lambda) aV_{\mu\nu} \tilde{V}^{\mu\nu} $ $ (C_{ff}/\Lambda) \partial_{\mu} a\overline{f} \gamma^{\mu} \gamma^{5} f $	9, 11 10	γγ, ℓℓ	$2\pi\gamma$, 3π , 4π , $2\pi\eta$, $2K\pi$
dark Photon (A' _µ)	vector	$-\left(\varepsilon/2\cos\theta_{W}\right)F_{\mu\nu}^{'}B^{\mu\nu}$	1 - 2	<u>ℓℓ</u>	2π , 3π , 4π , $2K$, $2K\pi$

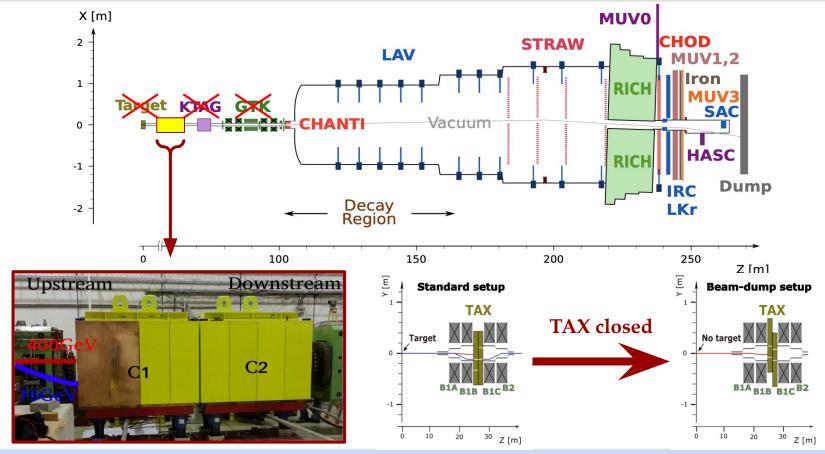
Two type modes for NP particle searches at NA62 Experiment:

- → Beam-Dump mode: Search NP particles into the Final States composed of SM particles;
- → **K mode**: Search NP particles in SM particle decays.


The NA62 Experiment

- → Fixed-target experiment @ CERN North Area (SPS)
- \rightarrow Main goal is to measure ultra-rare $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay with high precision; the experiment additionally covers a broad Kaon and Beam-Dump physics program.
- → Two data-taking period Run-I (2016-2018) and Run-II (2021-2025); Run-I paper: <u>IHEP 06 (2021) 093</u>; Run-II is ongoing!

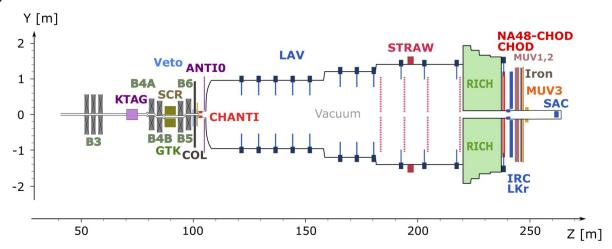
The NA62 Experiment in kaon mode


- → 400 GeV/c primary p^+ beam collides Be target with ~10¹² proton/s on spill; 75 GeV/c secondary beam (~6% of K^+) selected using **TAX** collimators.
- \rightarrow K^+ (~5MHz) decay-in-flight in 60 m long fiducial volume (FV)¹;
- → K⁺ tagged by **KTAG** and 3 mom. determined by **GTK**;
- → Decay products' 3 mom. measured by STRAW; time measured by CHOD; PID given by LKr, MUV1, MUV2 and RICH; µ-ID provided by MUV3;
- → Photons can be vetoed by LKr and at large angles by 12 LAV stations or by SAC/IRC at small angles;

 \rightarrow Overall experimental time resolution reaches $\mathcal{O}(100)$ ps


¹ The Beam and Detector of NA62 Experiment at CERN [IINST 12 (2017) 05, P05025].

The NA62 Experiment in beam-dump mode - I -


The NA62 Experiment in beam-dump mode - II -

- → reduced background from penetrating particles through improved sweeping from magnets downstream of the TAX;
- → increase proton beam intensity ~1.5xNominal;

The NA62 Experiment in beam-dump mode - III -

- → trigger lines for charged particles;
 - Q1/20: $n_{hits} \ge 1$ in CHOD;
 - ♦ H2: $n_{hits} \ge 2$ in-time in CHOD;
- → $N_{POT} = (1.4 \pm 0.28) \times 10^{17}$ Protons On Target (POT) collected in 2021; target is $N_{POT} \approx 10^{18}$ during Run-II;
- → NP searches into *ee* and μμ, two lepton final states using NA62 2021 BD data published²; today let's look into hadronic decays

² NA62 Collaboration [*IHEP* 09 (2023) 035, *Phys. Rev. Lett.* 133, 111802].

The Signal Monte Carlo in the dark side

- → Various possibilities for exotic particle X: dark photon (DP), dark scalar (DS), axion-like particle (ALP), etc.;
- → Various production mechanism and final states:

♦	DP: Bremsstrahlung, $P \rightarrow A'\gamma$, $V \rightarrow A'P$
	$V = \{\varrho, \omega, \phi\}$

- ♦ ALP: Primakoff (on-, off-shell); mixing with $P = \{\pi^0, \eta, \eta'\}, B^{\pm,0} \rightarrow K^{\pm,0,(*)} \boldsymbol{a}$

, dark scalar (D5), axion-like particle (A			
model	production channels	decay channels	
		$\pi^+\pi^-$	
	D 1.1	$\pi^{+}\pi^{-}\pi^{0}$	
	Bremsstrahlung	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	
DP		K^+K^-	
		$K^+K^-\pi^0$	
		$\pi^+\pi^-$	
	light meson decay	$\pi^{+}\pi^{-}\pi^{0}$	
		$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	
0.10.000		$\pi^+\pi^-$	
DS	B meson decay	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	
		K^+K^-	
		$\pi^+\pi^-\gamma$	
	Primakoff	$\pi^{+}\pi^{-}\pi^{0}$	
ALP	mixing $(\pi^0/\eta/\eta')$	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	
	B meson decay	$\pi^+\pi^-\eta$	
		$K^+K^-\pi^0$	

→ A total of 36 production and decay channel combinations studied.

What's next? Maybe in another conference:)

The Analysis Strategy

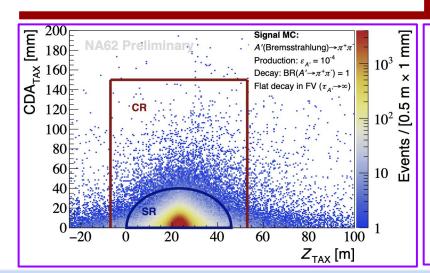
Selection criteria for two charged hadrons:

- → 2 good quality tracks in coincidence with each other and the trigger
- → Selecting hadrons with PID by LKr and MUV1-3; K⁺ tagging by RICH
- → No in-time activity in LAV, SAV and ANTI0
- → Decay vertex reconstructed in fiducial volume.

The Analysis Strategy

Selection criteria for two charged hadrons:

- → 2 good quality tracks in coincidence with each other and the trigger
- → Selecting hadrons with PID by LKr and MUV1-3; K⁺ tagging by RICH
- → No in-time activity in LAV, SAV and ANTI0
- → Decay vertex reconstructed in fiducial volume.


Search strategy:

- \rightarrow Using time and opening angle, reconstruct π^0 , γ , and η by checking neutral LKr clusters.
- → Exotic particle reconstructed from the decay vertex and backward-extrapolation to the TAX and definition of signal region (SR) in terms of primary vertex: CDA_{TAX} vs Z_{TAX}.

The Analysis Strategy

Selection criteria for two charged hadrons:

- → 2 good quality tracks in coincidence with each other and the trigger
- → Selecting hadrons with PID by LKr and MUV1-3; K⁺ tagging by RICH
- → No in-time activity in LAV, SAV and ANTI0
- → Decay vertex reconstructed in fiducial volume.

Search strategy:

- \rightarrow Using time and opening angle, reconstruct π^0 , γ , and η by checking neutral LKr clusters.
- ightharpoonup Exotic particle reconstructed from the decay vertex and backward-extrapolation to the TAX and definition of signal region (SR) in terms of primary vertex: CDA_{TAX} vs Z_{TAX} .

$A' \rightarrow \pi^{\dagger} \pi^{-}$ signal MC and definition of signal and control region

- → SR: { CDA_{TAX}, Z_{TAX} } = {0 mm, 23.07 m} with semi-axes 40 mm on CDA_{TAX} and 23 m on Z_{TAX} .
- \rightarrow CR: CDA_{TAX} < 150 mm and -7 m < Z_{TAX} < 53 m
- → During the analysis, both SR and CR were kept masked.

The **Background** overview

Just after masking SR and CR and lifting vetoes, two $\pi\pi$ events observed in data!

- → 1 event with vertex upstream of FV, vetoed by **ANTIO**
- → 1 event with vertex in FV, not vetoed by **ANTIO** but vetoed by **LAV**

The **Background** overview

Just after masking SR and CR and lifting vetoes, two $\pi\pi$ events observed in data!

- → 1 event with vertex upstream of FV, vetoed by **ANTIO**
- → 1 event with vertex in FV, not vetoed by **ANTIO** but vetoed by **LAV**

Background estimation with MC:

- → Combinatorial & neutrino induced BKG: negligible contributions
- \rightarrow **Prompt BKG:** μ -halo inelastic interactions with negligible contributions
- → **Upstream BKG:** Consisting of particles collected by the GTK achromat

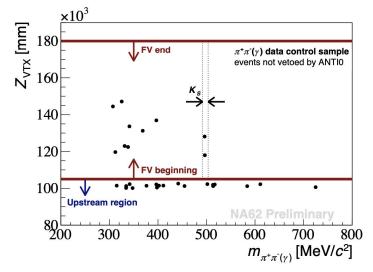
The Background overview - Prompt -

- Estimation based on data-driven backward MC of μ -halo, and correct kinematics through unfolding
- MC statistics correspond to $N_{POT} = 1.53 \times 10^{17} > \text{data statistics}$
- $\pi\pi$ **outside CR**, with ANTI0 acceptance, but no vetoes applied:
 - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1;$ with vertex **upstream** of FV;
 - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1;$ with vertex in FV;

12

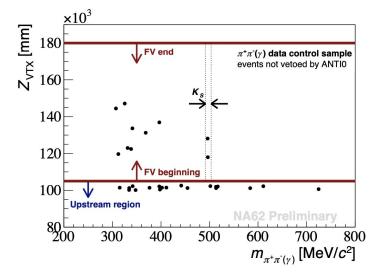
The Background overview - Prompt -

- \rightarrow Estimation based on data-driven backward MC of μ -halo, and correct kinematics through unfolding
- \rightarrow MC statistics correspond to $N_{\rm POT} = 1.53 \times 10^{17} > {\rm data\ statistics}$
- \rightarrow $\pi\pi$ **outside CR**, with ANTI0 acceptance, but no vetoes applied:
 - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1;$ with vertex **upstream** of FV;
 - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1;$ with vertex in FV;
- → After applying full selection criteria Prompt BKG from CR & SR $N_{\rm exp}$ < 10⁻⁴ for all channels

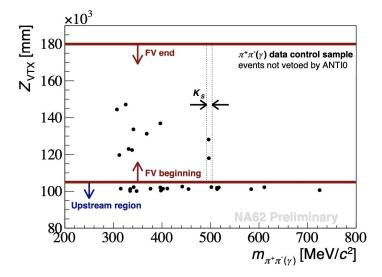

The Background overview - Prompt -

- \rightarrow Estimation based on data-driven backward MC of μ -halo, and correct kinematics through unfolding
- \rightarrow MC statistics correspond to $N_{\rm POT} = 1.53 \times 10^{17} > {\rm data\ statistics}$
- \rightarrow $\pi\pi$ **outside CR**, with ANTI0 acceptance, but no vetoes applied:
 - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1;$ with vertex **upstream** of FV;
 - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1;$ with vertex in FV;
- After applying full selection criteria Prompt BKG from CR & SR $N_{\rm exp}$ < 10⁻⁴ for all channels

Table: Summary of expected number of prompt background events at 68% CL for all studied decay channels in CR and SR after full selection.

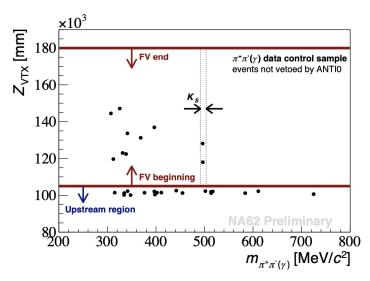

7		
Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\pi^+\pi^-$	$(5.7^{+18.5}_{-4.7}) \times 10^{-5}$	$(5.5^{+18.0}_{-4.5}) \times 10^{-5}$
$\pi^+\pi^-\gamma$	$(1.7^{+5.3}_{-1.4}) \times 10^{-5}$	$(1.6^{+5.2}_{-1.3}) \times 10^{-5}$
$\pi^{+}\pi^{-}\pi^{0}$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$

In the control samples (no veto by ANTI0), 3 subcomponents observed in the Z_{vtx} - $m_{\pi\pi}$ plane;


In the control samples (no veto by ANTI0), 3 subcomponents observed in the Z_{vtx} - $m_{\pi\pi}$ plane;

- → 19 upstream interactions;
- → $8 K^+ \to \pi^+ \pi^+ \pi^-$

In the control samples (no veto by ANTI0), 3 subcomponents observed in the Z_{vtx} - $m_{\pi\pi}$ plane;


- → 19 upstream interactions; vetoed by ANTIO!
- ⇒ $2 K_S \rightarrow \pi^+ \pi^-$; $m_{K_S} \pm 3\sigma$ (± 5.7 MeV/c²) kept masked
- $\Rightarrow 8 K^+ \rightarrow \pi^+ \pi^+ \pi^-$ 6 identified as $\pi^+ \pi^-$ and $2 \pi^+ \pi^- \gamma$

In the control samples (no veto by ANTI0), 3 subcomponents observed in the Z_{vtx} - $m_{\pi\pi}$ plane;

- → 19 upstream interactions; vetoed by ANTI0!
- ⇒ $2 K_S \rightarrow \pi^+ \pi^-$; $m_{K_S} \pm 3\sigma$ (± 5.7 MeV/c²) kept masked
- $8 K^+ \rightarrow \pi^+ \pi^+ \pi^-$ 6 identified as $\pi^+ \pi^-$ and $2 \pi^+ \pi^- \gamma$

A dedicated MC for K⁺-induced BKG simulated using selected K⁺ tracks which are forced to decay as $K^+ \to \pi^+ \pi^+ \pi^-$ in the FV

 \rightarrow Outside CR/SR **before** ANTI0 acc.; N_{exp} :

Channel	$N_{ m exp} \pm \delta N_{ m exp}$	$N_{ m obs}$
$\pi^+\pi^-$	5.6 ± 2.8	6
$\pi^+\pi^-\gamma$	2.4 ± 1.2	2

→ Outside CR/SR after ANTI0 acc.; N_{exp} :

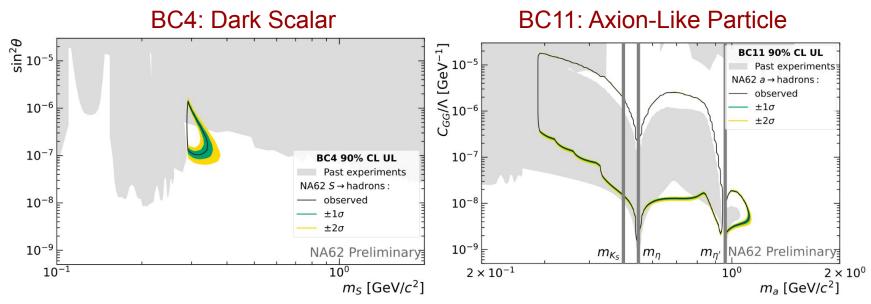
Channel	$N_{ m exp} \pm \delta N_{ m exp}$	$N_{ m obs}$
$\pi^+\pi^-$	0.68 ± 0.34	1
$\pi^+\pi^-\gamma$	0.31 ± 0.16	0

T 250	
$=250$ NA62 Preliminary $\kappa \rightarrow \pi^{+}\pi^{+}\pi^{-}$ MC (N_{κ} scaled to data)	0.016 🖹
$\pi^+\pi^-$ and $\pi^+\pi^-\gamma$ final states	<u> </u>
no LAV and ANTI0 veto	0.014∞
≥ 200	0.0110
¥ 200	0.012 ×
NA62 Preliminary $K \rightarrow \pi^+ \pi^+ \pi^- MC$ (N_K scaled to data) $\pi^+ \pi^-$ and $\pi^+ \pi^- \gamma$ final states no LAV and ANTIO veto	0.012
CR N _{evt} = 0.06	0.01.10
O 150	<u>-0.01</u> <u>\scale}</u>
	_
	0.008 ₩
100	0.006
	0.000
50 SR N _{evt} = 0.02	0.004
50 SR N _{evt} = 0.02	
	0.002
	0.002
	0
<u>-20 0 20 40 60 80 100 120 140 160 1</u>	80
Z_{TAX} [m	1
— IAX L···	

Figure: N_{exp} from $K_{3\pi}$ in the primary vertex Z and CDA plane before applying ANTI0 acceptance.

 \rightarrow Inside CR & SR; N_{exp} :

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004


ightharpoonup Additionally, simulations for $K_{\rm e4} \& K_{\mu 4}$ decays performed; negligible contributions

The Background overview - Total -

Table: Expected number of background events (68% CL) in CR and SR. Minimum number of observed events $N_{\rm obs}$ for a background-only p-value above 5σ in SR and SR+CR (global significance, flat background in $m_{\rm inv}$ assumed).

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$	$N_{ m obs,SR}^{p>5\sigma}$	$N_{ m obs,SR+CR}^{p>5\sigma}$
$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005	3	4
$\pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004	3	5
$\pi^{+}\pi^{-}\pi^{0}$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$	1	1
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$	1	1
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$	1	1
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$\left(4.6^{+15.2}_{-3.8}\right) \times 10^{-7}$	1	2
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$	1	1

The Preliminary Results

- → 0 events observed in all signal and control regions.
- → For the combination of results from individual production and decay channels, the ALPINIST³ has been used.
- → No standalone 90% CL exclusion for BC1: Dark Photon.

³ ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated [<u>IHEP 07 (2022) 094</u>].

The Conclusion

- → Preliminary result from the NA62 experiment in beam-dump mode on the search for an exotic particle's production and decay have been presented:
 - Conducted a blind analysis until the opening of control and signal regions.
 - ♦ No evidence of new physics signals
 - ♦ NA62 set 90% CL upper limit and new regions of dark scalar and axion-like particle parameter spaces have been excluded.
- → Search for exotic particles decaying into semi-leptonic or di-gamma final states are in progress.
- → Data-taking: new samples, ~ 4.6 × 10¹⁷ POT, already collected in 2023&2024 and 10¹⁸ POT in beam-dump mode expected by the LHC LS3 with interesting perspectives on the searches of dark photons, ALPs, dark scalars and HNLs.

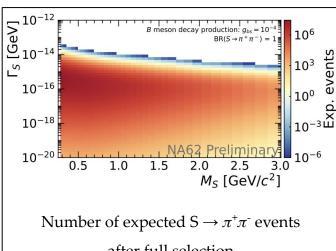
CERN Article: <u>NA62 announces its first search for long-lived particles</u>

Σας ευχαριστώ για την προσοχή σας

Backup

WIMP to WIMPless

Samet Lezki (MPI for Physics)


	WIMP Miracle	WIMPless Miracle - <u>I. Feng</u>
Mass Range	100 GeV – 1 TeV.	(sub-)GeV.
Interaction Type	Interacts via the weak nuclear force (Standard Model interactions).	Interacts through dark sector forces, independent of the weak force.
Relic Abundance Mechanism	Thermal freeze-out: WIMPs were in thermal equilibrium and annihilated until their interactions froze out as the universe expanded and cooled.	Thermal freeze-out within a hidden sector, where dark sector particles annihilate through hidden interactions and decouple from equilibrium as the universe expands and cools.
Detection Methods	Direct detection (e.g., XENON1T, LUX), indirect detection (e.g., gamma rays from annihilation), and collider searches (e.g., LHC).	Indirect detection targeting unique dark sector signatures (e.g., dark photons, ALPs, HNL), often requiring specialized experimental setups (e.g., NA62 at SPS; FASER, MATHUSLA, Codex-b at LHC).
Theoretical Motivation	Supported by Supersymmetry (SUSY) and other Beyond Standard Model (BSM) theories, offering a natural explanation for weak-scale dark matter.	Motivated by hidden sector models in BSM theories, light mediator, portal, providing flexibility in mass and coupling parameters.
Advantages	 - Predictive power: Simple and elegant explanation for dark matter abundance. - Strong theoretical motivation from SUSY and weak-scale physics. 	 Flexibility in mass and coupling strength. Can evade current experimental constraints that limit the WIMP parameter space.
Cosmological Implications	WIMPs fit well within the standard cosmological model, affecting structure formation and the thermal history of the universe.	WIMPless models allow for more diverse roles in cosmology, potentially involving interactions with both visible and hidden sectors.

The Sensitivity

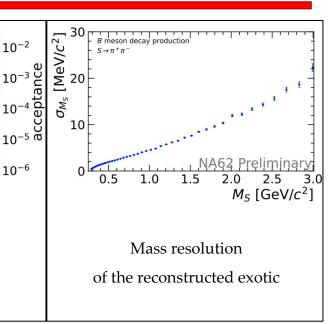
$X \rightarrow \pi^+\pi^-$; Model-Independent approach;

- \rightarrow BR($X \rightarrow \pi^+\pi^-$) = 1;
- $\rightarrow N_{\text{exp}}(M_X, \Gamma_X) = N_{\text{POT}} \times \chi_{pp \to X}(C_{ref}) \times P_{\text{rd}} \times A_{\text{acc}} \times A_{\text{trig}}$

 $\chi_{pp \to X}(C_{ref})$: X production probability for ref. coupling P_{rd} : Probability to reach and decay in FV $A_{acc} \times A_{trig}$: Signal selection and trigger efficiency

after full selection where $g_{bs} = 10^{-4}$ and BR = 1

 10^{-16}


 10^{-18}

Acceptance of full selection for an exotic decay in the FV

1.5

2.0

 M_S [GeV/ c^2]

The Search for dark photons (DP)

Model of DP A' with kinetic mixing with the SM hypercharge: $\mathcal{L} \supset -\frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu} \Rightarrow$

Two DP production mechanisms in the beam-dump setup (in TAX):

- Bremsstrahlung production: $p + N \to X + A'$
- meson-mediated production: $p+N \to X+M,\, M \to A'+\gamma(\pi^0),\, ext{where}\,\, M \in \left\{\pi^0,\eta,\rho,\omega,..
 ight\}$

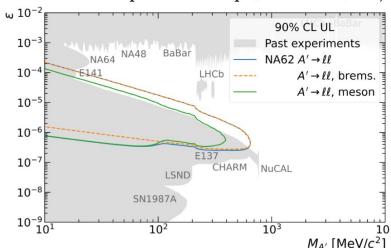


Figure: Sensitivity per production mechanism assuming 0 observed events in 1.4×10^{17} POT.

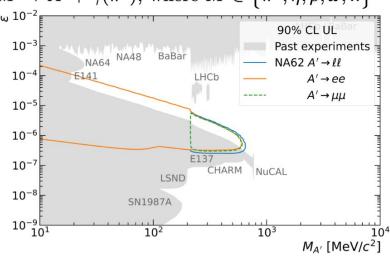
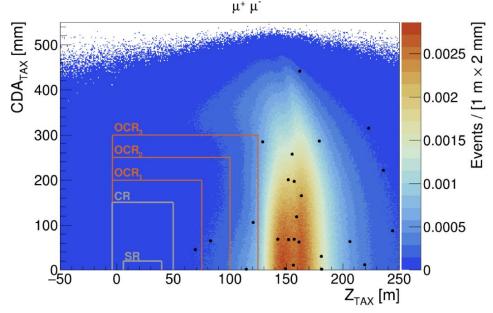



Figure: Sensitivity per decay mode assuming 0 observed events in 1.4×10^{17} POT.

The Search for dark photons $(A' \rightarrow \mu\mu)$

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs opened:

OCR1	0.29 ± 0.04	1	0.50	0.68	
OCR1+2+3	2.57 ± 0.33	4	0.26	0.24	
CR	0.17 ± 0.02	0	1.0	1.0	
SR	0.016 ± 0.002	-	-	-	
• probability to observe 1 or more events in SR					

 $\left|N_{
m exp} \pm \delta N_{
m exp} \right| N_{
m obs} \left| \, p_{N \geq N_{
m obs}}
ight|$

28

0.41

0.25

0.44

 26.3 ± 3.4

 1.70 ± 0.22

 0.58 ± 0.07

Figure: Data-MC comparison, SR closed.

is 1.59%

outside CR

OCR3

OCR2

 $p_{L \leq L_{\mathrm{obs}}}$

0.74

0.25

0.44

The Search for dark photons $(A' \rightarrow \mu\mu)$

Search for $A' \to \mu^+ \mu^-$ decay - data and MC comparison, CRs and SR opened:

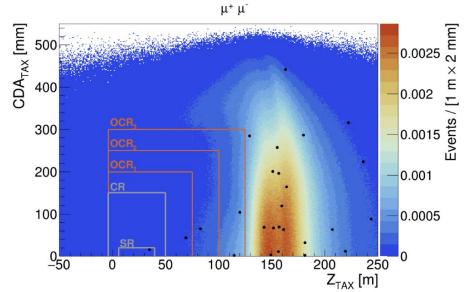


Figure: Data-MC comparison, CRs and SR open.

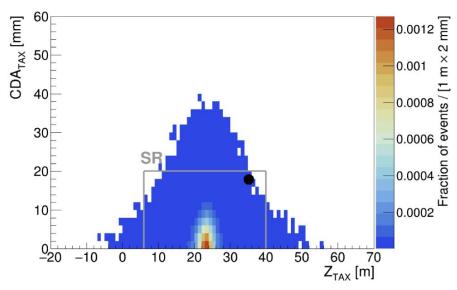


Figure: Signal MC - data: 1 event observed - counting experiment with 2.4σ significance. Signal shape not taken into account for the significance.

The Search for exotic (preudo)scalar

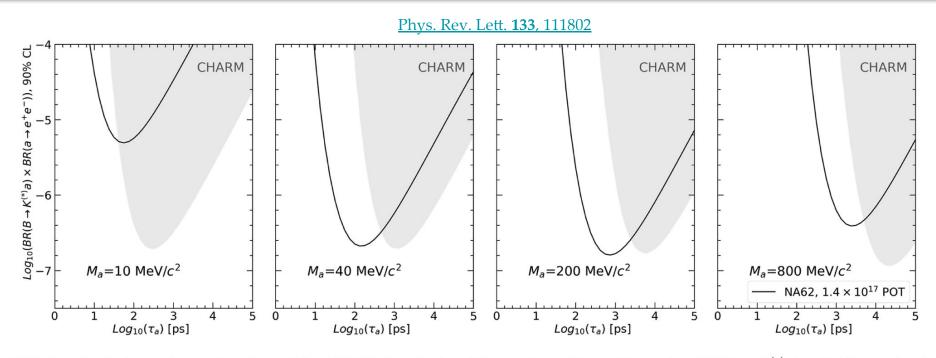


FIG. 5. Exclusion region in the plane of the ALP lifetime (τ_a) and the product of branching ratios $BR(B \to K^{(*)}a) \times BR(a \to e^+e^-)$ in the search for an axionlike particle a produced in B meson decays (solid curve). Four values of the ALP mass are considered. The region of the parameter space above the black line is excluded at 90% CL. The excluded regions by CHARM [34] measurements are shown as gray-filled areas.

The Search for dark photons $(A' \rightarrow \ell \ell)$

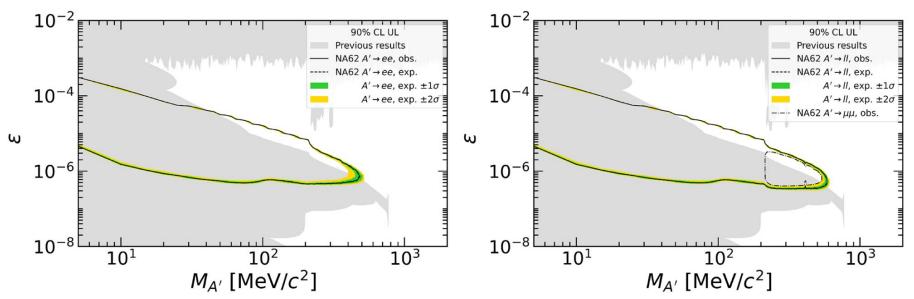
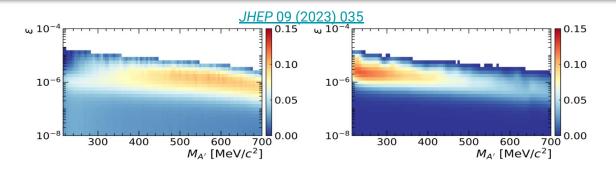



FIG. 4. Observed and expected exclusion contours, at 90% CL, in the plane $(M_{A'}, \varepsilon)$ for the $A' \to e^+e^-$ analysis (left) and the combined $A' \to e^+e^-$ and $A' \to \mu^+\mu^-$ analyses (right) together with the expected $\pm 1\sigma$ (green) and $\pm 2\sigma$ (yellow) bands. Previous results, including the recent FASER result [25] are shown in gray. The NA62 $A' \to \mu^+\mu^-$ result [10] is shown with a dot-dashed line in the right panel.

The Search for dark photons $(A' \rightarrow \mu\mu)$ - selection efficiency & signal yield -

Figure 11. Selection and trigger efficiency for the $A' \to \mu^+ \mu^-$ signal, as a function of the A' mass and coupling constant. Left (right) panel refers to the bremsstrahlung (meson-decay) production mode.

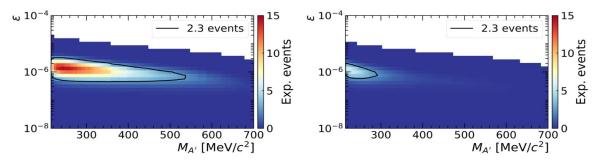


Figure 13. Expected number of events for the A' decay to $\mu^+\mu^-$ as a function of the A' mass and coupling constant. Left (right) panel refers to bremsstrahlung (meson-decay) production. The black contours correspond to 2.3 events.

The Search for dark photons $(A' \rightarrow ee)$ - selection efficiency & signal yield -

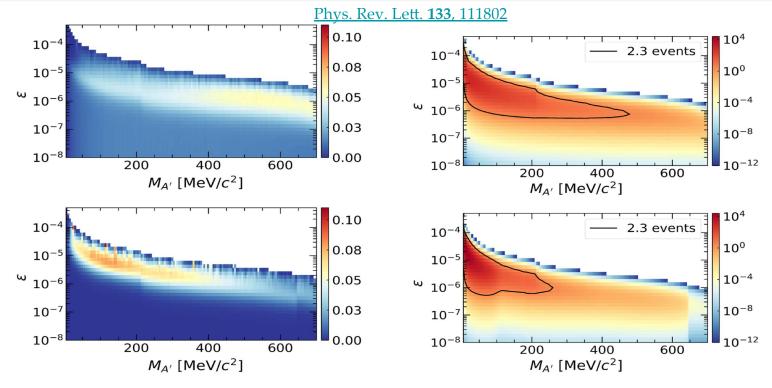


FIG. 6. Selection and trigger efficiency (color scale) for the $A' \to e^+ e^-$ in the plane $(M_{A'}, \varepsilon)$. The bremsstrahlung (meson-mediated) production mode is shown in the top (bottom) panel.

FIG. 7. Expected number of events in SR (color scale) for the $A' \to e^+e^-$ decay in the plane $(M_{A'}, \varepsilon)$. The bremsstrahlung (meson-mediated) production mode is shown in the top (bottom) panel. The black contour corresponds to 2.3 events.

The BeamDump Magnet

JHEP 09 (2023) 035

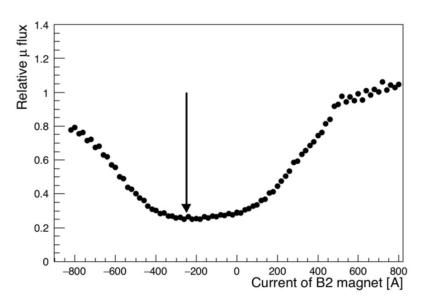


Figure 2. Relative muon flux measured by the MUV3 detector (section 2.1) as a function of the B2 magnet current. The reference point for the standard operation is +770 A, corresponding to a field strength of 1.8 T. The arrow indicates the working point for the beam-dump data taking, -250 A.

The BeamDump Magnet

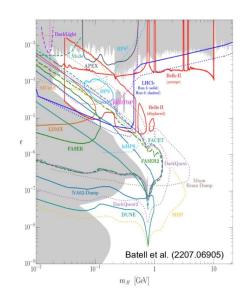
DARK PHOTON, DARK HIGGS, HNLS

 This provides an organizing principle that motivates specific examples of new, weakly interacting light particles. There are just a few options:

- Spin 1 SM -----
$$F_{\mu\nu}F_D^{\mu\nu}$$
----- Dark Force

→ dark photon, couples to SM fermions with suppressed couplings proportional to charge: εq_f. Holdom (1986)

• Spin 0 SM ---
$$h^\dagger h \phi_D^\dagger \phi_D$$
---- Dark Scalar


 \rightarrow dark Higgs boson, couples to SM fermions with suppressed coupling proportional to mass: $\sin \theta m_f$. Patt, Wilczek (2006)

• Spin 1/2 SM ----
$$hL\psi_D$$
----- Dark Fermion

 \rightarrow Heavy neutral leptons, mixes with SM vs with suppressed mixing sin θ .

Feng@LLP workshop

https://indico.cern.ch/ event/1216822/

