WUNIVERSITY of WASHINGTON

Latest results and current progress of ADMX G2 Michaela Guzzetti

19th Patras Workshop on Axions WIMPs and WISPs

Sep. 20th 2024

Axion Dark Matter eXperiment (ADMX)

- Axion direct detection experiment based at the University of Washington
- Utilizes a large magnetic field to convert "invisible" axions into observable microwave photons
- Tunable resonant cavity allows for power enhancement across a broad frequency range, but signal strength remains small
 - Use dilution refrigerator and ultra low-noise electronics to lower the noise floor

ADMX G2

- Began data taking operations in 2017
- Goal:
 - Search for axions at DFSZ sensitivity from 0.6 - 2 GHz
- Currently taking data for "Run 1D"
 - 1-1.4 GHz

ADMX collaboration (2022)

Run 1D Cavity

 136 liter copper-plated stainless steel cavity ~1 m length, 0.4 m diameter

Run 1A+1B

Run 1C

Run 1D Cavity

- 136 liter copper-plated stainless steel cavity ~1 m length, 0.4 m diameter
 - Single ~0.2 m diameter, 29 liter tuning rod

Run 1A+1B

Run 1C

Run 1D Cavity

- 136 liter copper-plated stainless steel cavity ~1 m length, 0.4 m diameter
 - Single ~0.2 m diameter, 29 liter tuning rod

Run 1A+1B

Run 1C

le8

- Understanding the system noise is crucial to determining our sensitivity
 - 2 primary sources of thermal noise (cavity + bypass attenuator)
 - 2 amplifiers (1 JPA, 1 HFET)

rucial to determining our sensitivity (cavity + bypass attenuator)

- noise source in place of the cavity

 \star Noise paper to be released soon with more details

- Two methods
 - Y-factor measurement with JPA off + Signal-to-Noise-Ratio-Improvement (SNRI)

- Two methods
 - Y-factor measurement with JPA off + Signal-to-Noise-Ratio-Improvement (SNRI)
 - Y-factor measurement with JPA on (new for Run 1D)

★ Noise paper to be released soon with more details

• Two methods

- Y-factor measurement with JPA off + Signal-to-Noise-Ratio-Improvement (SNRI)
- Y-factor measurement with JPA on (new for Run 1D)
- Original method is less direct than the new method, but easier to update in real-time

★ Noise paper to be released soon with more details

• Two methods

- Y-factor measurement with JPA off + Signal-to-Noise-Ratio-Improvement (SNRI)
- Y-factor measurement with JPA on (new for Run 1D)
- Original method is less direct than the new method, but easier to update in real-time
- Question:
 - Does the original SNRI method provide consistent results for T_{sys} compared with the new, more direct, method?

★ Noise paper to be released soon with more details

Two calibrations with the dedicated noise source (hot load)

 \star Noise paper to be released soon with more details

Two calibrations with the dedicated noise source (hot load)

- Two calibrations with the dedicated noise source (hot load)

- Two calibrations with the dedicated noise source (hot load)
- (JPA on) match up very well

One calibration with the cavity as the noise • source

★ Noise paper to be released soon with more details

source

 \star Noise paper to be released soon with more details

- source
 - and became much more stable causing the discontinuity

 \star Noise paper to be released soon with more details

- source
 - and became much more stable causing the discontinuity

 \star Noise paper to be released soon with more details

Run 1D Scan Progress

Run 1D Scan Progress

Run 1D Scan Progress

Run 1D Sidecar Updates

- Higher frequency (4-6 GHz) 'sidecar' cavity that rests on top of the main cavity which we can use for R&D testing
- For Run 1D, we switched the tuning rod out for a • superconducting one
 - $\mathcal{O}(1\mu m)$ Nb3Sn film sputtered on pure Niobium • substrate produced by SQMS at Fermilab
- Still evaluating the rod's performance, which • produced a Q lower than initially expected
- Able to take science data, only in a narrow frequency band due to piezomotor failure
- Paper with more details coming soon •
 - Contact: thomas.braine@pnnl.gov •

Run 1D Preliminary Sensitivity

Assumed value of $\rho_{\rm DM} = 0.45$ GeV/cm³

Assumed value of $g_{\gamma} = -0.97$

Run 1D Preliminary Sensitivity in Context

Next Steps

- Right now:
 - range
 - CAPP results
- Later this year: •
 - for a second, DFSZ-sensitive, pass of the Run 1D frequency range
- **Beyond:**

Focusing on unexplored regions of parameter space in the accessible frequency

Scanning large gaps from mode crossings/other issues in the recently published

Cryogenic and JPA/receiver upgrades to achieve a lower system noise temperature

4-cavity higher frequency (up to ~2 GHz) data taking run in the existing UW magnet

Acknowledgements

This work was supported by the U.S. Department of Energy through Grants No DE-SC0009800, No. DE-SC0009723, No. DE-SC0010296, No. DE-SC0010280, No. DE-SC0011665, No. DEFG02-97ER41029, No. DE-FG02-96ER40956, No. DEAC52-07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Pacific Northwest National Laboratory is a multi-program national laboratory operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830. Additional support was provided by the Heising-Simons Foundation and by the Lawrence Livermore National Laboratory LDRD office.

Fermilab

